972 resultados para Supported catalysts
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.
Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
Resumo:
The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we have made use of the study of the interaction between Fe(TDCPP)(+) and the axial ligands OH- and imidazole in order to help characterize the heterogenized catalysts Fe(TDCPP)SG and Fe(TDCPP)IPG through UV-VIS and EPR spectroscopies and thus, better understand their different catalytic activity in the oxidation of cyclohexane by PhIO. We have found out that in Fe(TDCPP)SG (containing 1.2 X 10(-6) mol Fe(TDCPP)(+)/g of support), the FeP bis-coordinates to silica gel through Fe-O coordination and it is high-spin (FeP)-P-III species. In Fe(TDCPP)IPG 1 (containing 1.1 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-4) mol imidazole/g of support), the FeP is bis-ligated to imidazole propyl gel through Fe-imidazole coordination and using NO as a paramagnetic probe, we present evidence that Fe(TDCPP)(+) is present as a mixture of low-spin (FeP)-P-III and (FeP)-P-II species. This catalyst led to a relative low yield of cyclohexanol (25%) because the bis-coordination of the (FeP)-P-III to the support partially blocks the reaction between Fe(TDCPP)(+) and PhIO, thus leading to the formation of only a small amount of the active species Fe-IV(OP+, while the (FeP)-P-II species do not react with the oxygen donor. Increasing the amount of Fe(TDCPP)(+) and decreasing the amount of imidazole in the support led to the obtention of high-spin (FeP)-P-III EPR signals in the spectra of Fe(TDCPP)IPG 5 (containing 4.4 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-5) mol imidazole/g of IPG), together with low-spin (FeP)-P-III species. This latter catalyst led to better cyclohexanol yields (67%) than Fe(TDCPP)IPG 1. Fe(TDCPP)IPG 5 was further used in a study of the optimization of its catalytic activity and in recycling experiments in the optimized conditions. Recycling oxidation reactions of Fe(TDCPP)IPG 5 led to a total turnover number of 201 and total cyclohexanol yield of 201%, which could not be attained with Fe(TDCPP)Cl in homogeneous solution (turnover = 96) due to the difficulty in recovering and reusing it.
Resumo:
In this work, the catalytic intermediates for Fe(TPP)(+), Fe(TDCPP)(+), Fe(TFPP)(+), Mn(TPP)(+) and Mn(TDCPP)(+) supported on imidazole propyl gel with PhIO were studied by UV-Vis spectrophotometry. For Fe(TPP)+ and Fe(TFPP)+ the study was also monitored by EPR spectroscopy. The active catalytic intermediate observed for FeP-IPG is the ore-iron (IV) porphyrin pi cation radical Fe-IV(O)P.+, which is evidenced by a decrease in the intensity of the Sorer band. The total re-establishment of the initial Soret band intensity for Fe(TDCPP)IPG and Fe(TFPP)IPG at the end of the reaction shows that they were completely recovered, There are advantages in following the reactions of PNO with unsubstituted Fe(TPP)(+) and Mn(TPP)(+) on IPG by UV-Vis, since they were slower and allowed to 'see' the intermediate species without spectral interference from the recovered catalyst, since they are only partially recovered. With Fe(TPP)IPG, a band at 580 nm was detected at the beginning of the reaction, indicating the possible formation of a Fe-OIPh intermediate. Supporting Mn(TPP)(+) on IPG leads to a shift of band V from 478 nm to 488 nm. In the reaction of MnP-IPG with PhIO, we observed the disappearance of the band in 488 nm and the appearance of a band in 412 nm, which corresponds to the active catalytic intermediate Mn-V(O)P as the main component, as is expected for a more efficient system. The recovery of supported catalysts observed in these experiments was further proved with the possibility of their successive recyclings in cyclohexane oxidation reactions by PhIO.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
During the last years we assisted to an exponential growth of scientific discoveries for catalysis by gold and many applications have been found for Au-based catalysts. In the literature there are several studies concerning the use of gold-based catalysts for environmental applications and good results are reported for the catalytic combustion of different volatile organic compounds (VOCs). Recently it has also been established that gold-based catalysts are potentially capable of being effectively employed in fuel cells in order to remove CO traces by preferential CO oxidation in H2-rich streams. Bi-metallic catalysts have attracted increasing attention because of their markedly different properties from either of the costituent metals, and above all their enhanced catalytic activity, selectivity and stability. In the literature there are several studies demostrating the beneficial effect due to the addition of an iron component to gold supported catalysts in terms of enhanced activity, selectivity, resistence to deactivation and prolonged lifetime of the catalyst. In this work we tried to develop a methodology for the preparation of iron stabilized gold nanoparticles with controlled size and composition, particularly in terms of obtaining an intimate contact between different phases, since it is well known that the catalytic behaviour of multi-component supported catalysts is strongly influenced by the size of the metal particles and by their reciprocal interaction. Ligand stabilized metal clusters, with nanometric dimensions, are possible precursors for the preparation of catalytically active nanoparticles with controlled dimensions and compositions. Among these, metal carbonyl clusters are quite attractive, since they can be prepared with several different sizes and compositions and, moreover, they are decomposed under very mild conditions. A novel preparation method was developed during this thesis for the preparation of iron and gold/iron supported catalysts using bi-metallic carbonyl clusters as precursors of highly dispersed nanoparticles over TiO2 and CeO2, which are widely considered two of the most suitable supports for gold nanoparticles. Au/FeOx catalysts were prepared by employing the bi-metallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO)16] (Fe/Au=1) and [NEt4][AuFe4(CO)16] (Fe/Au=4), and for comparison FeOx samples were prepared by employing the homometallic [NEt4][HFe3(CO)11] cluster. These clusters were prepared by Prof. Longoni research group (Department of Physical and Inorganic Chemistry- University of Bologna). Particular attention was dedicated to the optimization of a suitable thermal treatment in order to achieve, apart from a good Au and Fe metal dispersion, also the formation of appropriate species with good catalytic properties. A deep IR study was carried out in order to understand the physical interaction between clusters and different supports and detect the occurrence of chemical reactions between them at any stage of the preparation. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS was performed in order to investigate the catalysts properties, whit particular attention to the interaction between Au and Fe and its influence on the catalytic activity. This novel preparation method resulted in small gold metallic nanoparticles surrounded by highly dispersed iron oxide species, essentially in an amorphous phase, on both TiO2 and CeO2. The results presented in this thesis confirmed that FeOx species can stabilize small Au particles, since keeping costant the gold content but introducing a higher iron amount a higher metal dispersion was achieved. Partial encapsulation of gold atoms by iron species was observed since the Au/Fe surface ratio was found much lower than bulk ratio and a strong interaction between gold and oxide species, both of iron oxide and supports, was achieved. The prepared catalysts were tested in the total oxidation of VOCs, using toluene and methanol as probe molecules for aromatics and alchols, respectively, and in the PROX reaction. Different performances were observed on titania and ceria catalysts, on both toluene and methanol combustion. Toluene combustion on titania catalyst was found to be enhanced increasing iron loading while a moderate effect on FeOx-Ti activity was achieved by Au addition. In this case toluene combustion was improved due to a higher oxygen mobility depending on enhanced oxygen activation by FeOx and Au/FeOx dispersed on titania. On the contrary ceria activity was strongly decreased in the presence of FeOx, while the introduction of gold was found to moderate the detrimental effect of iron species. In fact, excellent ceria performances are due to its ability to adsorb toluene and O2. Since toluene activation is the determining factor for its oxidation, the partial coverage of ceria sites, responsible of toluene adsorption, by FeOx species finely dispersed on the surface resulted in worse efficiency in toluene combustion. Better results were obtained for both ceria and titania catalysts on methanol total oxidation. In this case, the performances achieved on differently supported catalysts indicate that the oxygen mobility is the determining factor in this reaction. The introduction of gold on both TiO2 and CeO2 catalysts, lead to a higher oxygen mobility due to the weakening of both Fe-O and Ce-O bonds and consequently to enhanced methanol combustion. The catalytic activity was found to strongly depend on oxygen mobility and followed the same trend observed for catalysts reducibility. Regarding CO PROX reaction, it was observed that Au/FeOx titania catalysts are less active than ceria ones, due to the lower reducibility of titania compared to ceria. In fact the availability of lattice oxygen involved in PROX reaction is much higher in the latter catalysts. However, the CO PROX performances observed for ceria catalysts are not really high compared to data reported in literature, probably due to the very low Au/Fe surface ratio achieved with this preparation method. CO preferential oxidation was found to strongly depend on Au particle size but also on surface oxygen reducibility, depending on the different oxide species which can be formed using different thermal treatment conditions or varying the iron loading over the support.
Resumo:
In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.
Resumo:
This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.
Resumo:
Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN LMoVNH LMoIVNH2 LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.
Resumo:
The present paper deals with experimentation of ZrO2 and Al2O3-supported catalysts for conversion of naphthalene, chosen as tar model compound of pyrolysis or gasification syngas. In particular, the reforming capacity of active metals and promoters such as Co, Ni, Fe, Cr, Ce and Pt was tested in a fixed bed reactor at temperature from 400 to 900 °C. As regards ZrO2-supported catalysts, the best results were achieved by the Ni/Fe/Pt catalyst with 96% naphthalene conversion, 78% and 280% as CO and H2 production yield at 800 °C. Regarding Al2O3-supported catalysts, they were more active on average than the zirconia ones, achieving a very good performance even at 500 °C (90–100% naphthalene conversion, 30–40% CO yield and 300–350% H2 yield at 550 °C). Influence of different amounts of alumina, montmorillonite and carbon on carrier composition as well as pellets’ size were also studied. Both zirconia and alumina catalysts showed deactivation at higher temperatures due to coke deposition, resulting in a strong H2 production drop. Regeneration of catalysts by O2 and steam as well as activation by H2 were also studied. The activated catalyst was able to convert more than 99% naphthalene at 450 °C with a CO and H2 production yield of 26% and 420%, respectively.
Resumo:
La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.
Resumo:
Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.