966 resultados para Supercritical fluids


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several operational aspects for thermal power plants in general are non-intuitive and involve simultaneous optimization of a number of operational parameters. In the case of solar operated power plants, it is even more difficult due to varying heat source temperatures induced by variability in insolation levels. This paper introduces a quantitative methodology for load regulation of a CO2 based Brayton cycle power plant using the `thermal efficiency and specific work output' coordinate system. The analysis shows that a transcritical CO2 cycle offers more flexibility under part load performance than the supercritical cycle in case of non-solar power plants. However, for concentrated solar power, where efficiency is important, supercritical CO2 cycle fares better than transcritical CO2 cycle. A number of empirical equations relating heat source temperature, high side pressure with efficiency and specific work output are proposed which could assist in generating control algorithms. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A physical model is presented to describe the kinds of static forces responsible for adhesion of nano-scale copper metal particles to silicon surface with a fluid layer. To demonstrate the extent of particle cleaning, Received in revised form equilibrium separation distance (ESD) and net adhesion force (NAF) of a regulated metal particle with different radii (10-300 nm) on the silicon surface in CO2-based cleaning systems under different pressures were simulated. Generally, increasing the pressure of the cleaning system decreased the net adhesion force between spherical copper particle and silicon surface entrapped with medium. For CO2 + isopropanol cleaning system, the equilibrium separation distance exhibited a maximum at temperature 313.15 K in the Equilibrium separation distance regions of pressure space (1.84-8.02 MPa). When the dimension of copper particle was given, for example, High pressure 50 nm radius particles, the net adhesion force decreased and equilibrium separation distance increased with increased pressure in the CO2 + H2O cleaning system at temperature 348.15 K under 2.50-12.67 MPa pressure range. However, the net adhesion force and equilibrium separation distance both decreased with an increase in surfactant concentration at given pressure (27.6 or 27.5 MPa) and temperature (318 or 298 K) for CO2 + H2O with surfactant PFPE COO-NH4+ or DiF(8)-PO4-Na+. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

氮杂环化合物大多数都是具有生理活性的物质,例如喹喔啉化合物与苯二氮卓类化合物,因此研究氮杂环化合物骨架的构建方法具有一定意义。绿色化学的迅速发展迫切要求化学家发展清洁、经济和环境较友好条件下的有机合成方法。其中,水相反应与绿色固体酸催化剂的使用都是实现绿色有机合成的重要途径,它们非常具有潜力,近些年受到了广泛关注。本论文的主要工作是围绕水相及固体酸催化条件下两类具有生物活性的含氮杂环小分子的合成方法而开展的,具体包括以下内容: 1. 研究和探索出了两类绿色固体酸催化剂蒙脱土(Mont. K-10)和杂多酸(H4SiW12O40), 在水相条件下成功合成出喹喔啉化合物的有效方法。两个催化体系都以无毒无公害的水作反应溶剂,实验条件温和,操作安全简便,反应速度快,底物普适性强,产率高,且产物易分离收集。两类固体酸催化剂,对设备腐蚀性小,可回收循环使用,对环境无公害; 蒙脱土催化大部分底物能得到当量产率的产物,硅钨酸催化催化剂负载量小。 2. 实现了无溶剂条件下,以杂多酸(H3PW12O40)作催化剂,高效合成1,5-苯二氮卓衍生物的合成方法。该催化体系具有以下一些优势:实验条件温和,反应速度较快,底物普适性良好,产物易分离收集,反应过程中没有加入其它有机溶剂,绿色环保。 ‘Green Chemistry’ is currently a major issue of modern chemistry. It is widely acknowledged that there is a growing need for more environmentally acceptable processes in the chemical industry. New green catalysts and green reaction media are the important and efficient strategies in green chemistry. New green catalysts include solid acid catalysts, solid base catalysts, metal catalysts not only possess higher activity and selectivity, but also are easily separated from reaction system. Green reaction media include water, supercritical fluids and ionic liquids can not only substitute traditional toxic and harmed organic solvents, but also improve reaction activity and selectivity. Meanwhile water is a promising green reaction medium for use in modern chemistry because it has a number of advantages such as the cheapest solvent available on earth, being non-hazardous and non-toxic to the environment. Solid acids had also attracted much attention for realizing green chemistry due to their unique acidity, high activity and efficiency as organic catalysts. Nitrogen-containing heterocyclic compounds of different ring sizes such as quinoxaline and benzodiazepine are the important pharmacologically active compounds. Due to the wide biological significance of these compounds, the synthesis of these types of compounds have received a great deal of attention. Despite the large availability of methods to construct nitrogen-containing heterocyclic compounds, there is still a strong need to further explore green methods to efficiently and safely synthesize these compounds. Thus, we aim at developing efficient and green methodology for the synthesis of quinoxaline and benzodiazepine carried out under water condition with solid acid catalysts. The contents of this dissertation are listed as the following: 1. We have developed two catalytic systems for the synthesis quinoxaline via the condensation of an aryl 1,2-diamine with a 1,2-diketone compound in the presence of Mont. K-10 or H4SiW12O40 as a catalyst in water solvent. Both of these two methods can be applied to wide range of substrates, tolerating aryl 1,2-diamine/1,2-diketone with the electron donating/drawing substituent. Operational simplicity, the ambient conditions, use of an economically convenient catalyst, use of water as a desirable solvent, high yields and short reaction times are the key features of these two protocols. 2. We developed a convenient and efficient protocol for the synthesis of a variety of 1,5-benzodiazepines in high yields via condensation of aryl o-phenylenediamine derivatives with a variety of ketones using H3PW12O40 as a green recyclable and heterogeneous catalyst under solvent-free condition. The simple experiment procedure combined with ease of recovery and reuse of this catalyst make this procedure quite simple, more convenient and environmentally benign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogenation of alpha,beta-unsaturated aldehydes (citral, 3-methyl-2-butenal, cinnamaldehyde) has been studied with tetrakis(triphenylphosphine) ruthenium dihydride (H2Ru(TPP)(4)) catalyst in a poly(ethylene glycol) (PEG)/ compressed carbon dioxide biphasic system. The hydrogenation reaction was slow under PEG/ H-2 biphasic conditions at H-2 4 MPa in the absence of CO2. When the reaction mixture was pressurized by a non-reactant of CO2, however, the reaction was significantly accelerated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential of CO2-expanded liquid media for chemical reactions has been examined in this work, using cyclohexane as a solvent and Pd/C as a heterogeneous catalyst for hydrogenation of styrene, citral, and nitrobenzene with H-2. The rate of hydrogenation reactions is increased, and the product selectivity is altered in the CO2-expanded cyclohexane phase. In the hydrogenation of citral, the selectivity to citronellal decreases with CO2 pressure, which changes from similar to 80% in the neat cyclohexane to similar to 65% at 16 MPa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A catalyst of Rh nanoparticles supported on a carbon nanofiber, 5 wt.% Rh/CNF, with an average size of 2-3 nm has been prepared by a method of incipient wetness impregnation. The catalyst presented a high activity in the ring hydrogenation of phenol in a medium of supercritical CO2 (scCO(2)) at a low temperature of 323 K. The presence of compressed CO2 retards hydrogenation of cyclohexanone to cyclohexanol under the reaction conditions used, and this is beneficial for the formation of cyclohexanone, increasing the selectivity to cyclohexanone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selective hydrogenation of nitrobenzene (NB) over Ni/gamma-Al2O3 Catalysts Was investigated using different media of dense phase CO2, ethanol, and n-hexane. In dense phase CO2, the total rate of NB hydrogenation was larger than that in organic solvents under similar reaction conditions; the selectivity to the desired product, aniline, was almost 100% over the whole conversion range of 0-100%. The phase behavior of the reactant mixture in/under dense phase CO2 was examined at reaction conditions. In situ high-pressure Fourier transform infrared measurements were made to study the molecular interactions Of CO2 with the following reactant and reaction intermediates: NB, nitrosobenzene (NSB), and N-phenylhydroxylamine (PHA). Dense phase CO2 strongly interacts with NB, NSB, and PHA, modifying the reactivity of each species and contributing to positive effects on the reaction rate and the selectivity to aniline. A possible reaction pathway for the hydrogenation of NB in/under dense phase CO2 over Ni/gamma-Al2O3 is also proposed.