995 resultados para Strong Stability
Resumo:
The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.
Resumo:
Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.
Resumo:
The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.
Resumo:
We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.
Resumo:
The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.
Resumo:
Context: Core strength training (CST) has been popular in the fitness industry for a decade. Although strong core muscles are believed to enhance athletic performance, only few scientific studies have been conducted to identify the effectiveness of CST on improving athletic performance. Objective: Identify the effects of a 6-wk CST on running kinetics, lower extremity stability, and running performance in recreational and competitive runners. Design and Setting: A test-retest, randomized control design was used to assess the effect of CST and no CST on ground reaction force (GRF), lower extremity stability scores, and running performance. Participants: Twenty-eight healthy adults (age, 36.9+9.4yrs, height, 168.4+9.6cm, mass, 70.1+15.3kg) were recruited and randomly divided into two groups. Main outcome Measures: GRF was determined by calculating peak impact vertical GRF (vGRF), peak active vGRF, duration of the breaking or horizontal GRF (hGRF), and duration of the propulsive hGRF as measured while running across a force plate. Lower extremity stability in three directions (anterior, posterior, lateral) was assessed using the Star Excursion Balance Test (SEBT). Running performance was determined by 5000 meter run measured on selected outdoor tracks. Six 2 (time) X 2 (condition) mixed-design ANOVA were used to determine if CST influences on each dependent variable, p < .05. Results: No significant interactions were found for any kinetic variables and SEBT score, p>.05. But 5000m run time showed significant interaction, p < .05. SEBT scores improved in both groups, but more in the experimental group. Conclusion: CST did not significantly influence kinetic efficiency and lower extremity stability, but did influence running performance.
Resumo:
Mesoscale Gravity Waves (MGWs) are large pressure perturbations that form in the presence of a stable layer at the surface either behind Mesoscale Convective Systems (MCSs) in summer or over warm frontal surfaces behind elevated convection in winter. MGWs are associated with damaging winds, moderate to heavy precipitation, and occasional heat bursts at the surface. The forcing mechanism for MGWs in this study is hypothesized to be evaporative cooling occurring behind a convective line. This evaporatively-cooled air generates a downdraft that then depresses the surface-based stable layer and causes pressure decreases, strong wind speeds and MGW genesis. Using the Weather Research and Forecast Model (WRF) version 3.0, evaporative cooling is simulated using an imposed cold thermal. Sensitivity studies examine the response of MGW structure to different thermal and shear profiles where the strength and depth of the inversion are varied, as well as the amount of wind shear. MGWs are characterized in terms of response variables, such as wind speed perturbations (U'), temperature perturbations (T'), pressure perturbations (P'), potential temperature perturbations (Θ'), and the correlation coefficient (R) between U' and P'. Regime Diagrams portray the response of MGW to the above variables in order to better understand the formation, causes, and intensity of MGWs. The results of this study indicate that shallow, weak surface layers coupled with deep, neutral layers above favor the formation of waves of elevation. Conversely, deep strong surface layers coupled with deep, neutral layers above favor the formation of waves of depression. This is also the type of atmospheric setup that tends to produce substantial surface heating at the surface.
Resumo:
Site-specific management (SSM) is a form of precision agriculture whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field. SSM enables the identification of regions (homogeneous management zones) within the area delimited by field boundaries. These subfield regions constitute areas that have similar permanent characteristics. Traditional soil and pasture sampling and the necessary laboratory analysis are time-consuming, labour-intensive and cost prohibitive, not viable from a SSM perspective because it needs a large number of soil and pasture samples in order to achieve a good representation of soil properties, nutrient levels and pasture quality and productivity. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of soil nutrients and pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Three types of sensors were evaluated in a 7ha pasture experimental field: an electromagnetic induction sensor (“DUALEM 1S”, which measures the soil apparent electrical conductivity, ECa), an active optical sensor ("OptRx®", which measures the NDVI, “Normalized Difference Vegetation Index”) and a capacitance probe ("GrassMaster II" which estimates plant mass). The results indicate the possibility of using a soil electrical conductivity probe as, probably, the best tool for monitoring not only some of the characteristics of the soil, but also those of the pasture, which could represent an important help in simplifying the process of sampling and support SSM decision making, in precision agriculture projects. On the other hand, the significant and very strong correlations obtained between capacitance and NDVI and between any of these parameters and the pasture productivity shows the potential of these tools for monitoring the evolution of spatial and temporal patterns of the vegetative growth of biodiverse pasture, for identifying different plant species and variability in pasture yield in Alentejo dry-land farming systems. These results are relevant for the selection of an adequate sensing system for a particular application and open new perspectives for other works that would allow the testing, calibration and validation of the sensors in a wider range of pasture production conditions, namely the extraordinary diversity of botanical species that are characteristic of the Mediterranean region at the different periods of the year.
Resumo:
Ultracold dilute gases occupy an important role in modern physics and they are employed to verify fundamental quantum theories in most branches of theoretical physics. The scope of this thesis work is the study of Bose-Fermi (BF) mixtures at zero temperature with a tunable pairing between bosons and fermions. The mixtures are treated with diagrammatic quantum many-body methods based on the so-called T-matrix formalism. Starting from the Fermi-polaron limit, I will explore various values of relative concentrations up to mixtures with a majority of bosons, a case barely considered in previous works. An unexpected quantum phase transition is found to occur in a certain range of BF coupling for mixture with a slight majority of bosons. The mechanical stability of mixtures has been analysed, when the boson-fermion interaction is changed from weak to strong values, in the light of experimental results recently obtained for a double-degenerate Bose-Fermi mixture of 23 Na - 40 K. A possible improvement in the description of the boson-boson repulsion based on Popov's theory is proposed. Finally, the effects of a harmonic trapping potential are described, with a comparison with the experimental data for the condensate fraction recently obtained for a trapped 23 Na - 40 K mixture.
Resumo:
The aim of this investigation was to compare the skeletal stability of three different rigid fixation methods after mandibular advancement. Fifty-five class II malocclusion patients treated with the use of bilateral sagittal split ramus osteotomy and mandibular advancement were selected for this retrospective study. Group 1 (n = 17) had miniplates with monocortical screws, Group 2 (n = 16) had bicortical screws and Group 3 (n = 22) had the osteotomy fixed by means of the hybrid technique. Cephalograms were taken preoperatively, 1 week within the postoperative care period, and 6 months after the orthognathic surgery. Linear and angular changes of the cephalometric landmarks of the chin region were measured at each period, and the changes at each cephalometric landmark were determined for the time gaps. Postoperative changes in the mandibular shape were analyzed to determine the stability of fixation methods. There was minimum difference in the relapse of the mandibular advancement among the three groups. Statistical analysis showed no significant difference in postoperative stability. However, a positive correlation between the amount of advancement and the amount of postoperative relapse was demonstrated by the linear multiple regression test (p < 0.05). It can be concluded that all techniques can be used to obtain stable postoperative results in mandibular advancement after 6 months.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Resumo:
The aim of this study was to analyze the effects of dual tasking on obstacle crossing during walking by individuals with Alzheimer's disease (AD) and by healthy older people. Thirty four elderly individuals (16 healthy subjects and 18 individuals with AD) were recruited to participate in this study. Three AD individuals and one control participant were excluded due to exclusion criteria. The participants were instructed to walk barefoot at their own speed along an 8 m long pathway. Each participant performed five trials for each condition (unobstructed walking, unobstructed walking with dual tasking, and obstacle crossing during walking with dual tasking). The trials were completely randomized for each participant. The mid-pathway stride was measured in the unobstructed walking trials and the stride that occurred during the obstacle avoidance was measured in the trials that involved obstacle crossing. The behavior of the healthy elderly subjects and individuals with AD was similar for obstacle crossing during walking with dual tasking. Both groups used the posture first strategy to prioritize stability and showed decreased attention to executive tasking while walking. Additionally, AD had a strong influence on the modifications that are made by the elderly while walking under different walking conditions.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.