977 resultados para Striated muscle - Physiology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here, we evaluated collagen distribution and matrix metalloproteinases (MMPs) MMP-2 and MMP-9 activities in skeletal muscle of pacu (Piaractus mesopotamicus) during juvenile and adult growth phases. Muscle samples from juvenile and adult fishes were processed by histochemistry for collagen system fibers and for gelatin-zymography for MMP-2 and MMP-9 activities analysis. Picrosirius staining revealed a myosept, endomysium, and perimysium-like structures in both growth phases and muscle types, with increased areas of collagen fibers in adults, mainly in red muscle. Reticulin staining showed that reticular fibers in the endomysium-like structure were thinner and discontinuous in the red muscle fibers. The zymography revealed clear bands of the pro-MMP-9, active-MMP-9, intermediate-MMP-2, and active-MMP-2 forms in red and white muscle in both growth phases. MMP-2 activity was more intense in juvenile than adult muscle fibers. Comparing the red and white muscle types, MMP-2 activity was significantly higher in red muscle in adult phase only. The activity of MMP-9 forms was similar in juvenile red and white muscles and in the adult red muscle, without any activity in adult white muscle. In conclusion, our results show that, in pacu, the higher activities of MMP-2 and -9 are associated with the rapid muscle growth in juvenile age and in adult fish, these activities are related with a different red and white muscle physiology. This study may contribute to the understanding muscle growth mechanisms and may also contribute to analyse red and the white muscle parameters of firmness and softness, respectively, of the commercial product. Anat Rec, 292:387-395, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (VLr) and maximal lung volume (VLm) when compared with tegus with intact PHS. Standardised for body mass (MB), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A genetic hierarchy of interactions, involving myogenic regulatory factors of the MyoD and myocyte enhancer-binding 2 (MEF2) families, serves to elaborate and maintain the differentiated muscle phenotype through transcriptional regulation of muscle-specific target genes. Much work suggests that members of the cysteine-rich protein (CRP) family of LIM domain proteins also play a role in muscle differentiation; however, the specific functions of CRPs in this process remain undefined. Previously, we characterized two members of the Drosophila CRP family, the muscle LIM proteins Mlp60A and Mlp84B, which show restricted expression in differentiating muscle lineages. To extend our analysis of Drosophila Mlps, we characterized the expression of Mlps in mutant backgrounds that disrupt specific aspects of muscle development. We show a genetic requirement for the transcription factor dMEF2 in regulating Mlp expression and an ability of dMEF2 to bind, in vitro, to consensus MEF2 sites derived from those present in Mlp genomic sequences. These data suggest that the Mlp genes may be direct targets of dMEF2 within the genetic hierarchy controlling muscle differentiation. Mutations that disrupt myoblast fusion fail to affect Mlp expression. In later stages of myogenic differentiation, which are dedicated primarily to assembly of the contractile apparatus, we analyzed the subcellular distribution of Mlp84B in detail. Immunofluorescent studies revealed the localization of Mlp84B to muscle attachment sites and the periphery of Z-bands of striated muscle. Analysis of mutations that affect expression of integrins and α-actinin, key components of these structures, also failed to perturb Mlp84B distribution. In conclusion, we have used molecular epistasis analysis to position Mlp function downstream of events involving mesoderm specification and patterning and concomitant with terminal muscle differentiation. Furthermore, our results are consistent with a structural role for Mlps as components of muscle cytoarchitecture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used a fluorescence recovery after photobleaching (FRAP) technique to measure radial diffusion of myoglobin and other proteins in single skeletal and cardiac muscle cells. We compare the radial diffusivities, Dr (i.e., diffusion perpendicular to the long fiber axis), with longitudinal ones, Dl (i.e., parallel to the long fiber axis), both measured by the same technique, for myoglobin (17 kDa), lactalbumin (14 kDa), and ovalbumin (45 kDa). At 22°C, Dl for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes. Dl for lactalbumin is similar in both cell types. Dr for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes and, again, similar for lactalbumin. Dl and Dr for ovalbumin are 0.5 × 10−7 cm2/s. In the case of myoglobin, both Dl and Dr at 37°C are about 80% higher than at 22°C. We conclude that intracellular diffusivity of myoglobin and other proteins (i) is very low in striated muscle cells, ≈1/10 of the value in dilute protein solution, (ii) is not markedly different in longitudinal and radial direction, and (iii) is identical in heart and skeletal muscle. A Krogh cylinder model calculation holding for steady-state tissue oxygenation predicts that, based on these myoglobin diffusivities, myoglobin-facilitated oxygen diffusion contributes 4% to the overall intracellular oxygen transport of maximally exercising skeletal muscle and less than 2% to that of heart under conditions of high work load.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In addition to the contractile proteins actin and myosin, contractile filaments of striated muscle contain other proteins that are important for regulating the structure and the interaction of the two force-generating proteins. In the thin filaments, troponin and tropomyosin form a Ca-sensitive trigger that activates normal contraction when intracellular Ca is elevated. In the thick filament, there are several myosin-binding proteins whose functions are unclear. Among these is the myosin-binding protein C (MBP-C). The cardiac isoform contains four phosphorylation sites under the control of cAMP and calmodulin-regulated kinases, whereas the skeletal isoform contains only one such site, suggesting that phosphorylation in cardiac muscle has a specific regulatory function. We isolated natural thick filaments from cardiac muscle and, using electron microscopy and optical diffraction, determined the effect of phosphorylation of MBP-C on cross bridges. The thickness of the filaments that had been treated with protein kinase A was increased where cross bridges were present. No change occurred in the central bare zone that is devoid of cross bridges. The intensity of the reflections along the 43-nm layer line, which is primarily due to the helical array of cross bridges, was increased, and the distance of the first peak reflection from the meridian along the 43-nm layer line was decreased. The results indicate that phosphorylation of MBP-C (i) extends the cross bridges from the backbone of the filament and (ii) increases their degree of order and/or alters their orientation. These changes could alter rate constants for attachment to and detachment from the thin filament and thereby modify force production in activated cardiac muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During excitation-contraction (e-c) coupling of striated muscle, depolarization of the surface membrane is converted into Ca2+ release from internal stores. This process occurs at intracellular junctions characterized by a specialized composition and structural organization of membrane proteins. The coordinated arrangement of the two key junctional components--the dihydropyridine receptor (DHPR) in the surface membrane and the ryanodine receptor (RyR) in the sarcoplasmic reticulum--is essential for their normal, tissue-specific function in e-c coupling. The mechanisms involved in the formation of the junctions and a potential participation of DHPRs and RyRs in this process have been subject of intensive studies over the past 5 years. In this review we discuss recent advances in understanding the organization of these molecules in skeletal and cardiac muscle, as well as their concurrent and independent assembly during development of normal and mutant muscle. From this information we derive a model for the assembly of the junctions and the establishment of the precise structural relationship between DHPRs and RyRs that underlies their interaction in e-c coupling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transfection with a plasmid encoding the 3' untranslated region (3' UTR) of skeletal muscle tropomyosin induces chicken embryonic fibroblasts to express skeletal tropomyosin. Such cells become spindle shaped, fuse, and express titin, a marker of striated muscle differentiation. Skeletal muscle tropomyosin and titin organize in sarcomeric arrays. When the tropomyosin 3' UTR is expressed in osteoblasts, less skeletal muscle tropomyosin is expressed, and titin expression is delayed. Some transfected osteoblasts become spindle shaped but do not fuse nor organize these proteins into sarcomeres. Transfected cells expressing muscle tropomyosin organize muscle and nonmuscle isoforms into the same structures. Thus, the skeletal muscle tropomyosin 3' UTR induces transdifferentiation into a striated muscle phenotype in a cell-type-specific context.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were upregulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Palladin is a novel actin microfilament associated protein, which together with myotilin and myopalladin forms a novel cytoskeletal IgC2 domain protein family. Whereas the expression of myotilin and myopalladin is limited mainly to striated muscle, palladin is widely expressed in both epithelial and mesenchymal tissues, including heart and the nervous system. Palladin has a complex genetic structure and it is expressed as several different sized and structured splice variants, which also display differences in their expression pattern and interactions. In muscle cells, all the family members localize to the sarcomeric Z-disc, and in non-muscle cells palladin also localizes to the stress-fiber-dense regions, lamellipodia, podosomes and focal adhesions. A common feature of this protein family is the binding to α-actinin, but other interactions are mostly unique to each member. Palladin has been shown to interact with several proteins, including VASP, profilin, Eps8, LASP-1 and LPP. Its domain structure, lack of enzymatic activity and multiple interactions define it as a molecular scaffolding protein, which links together proteins with different functional modalities into large complexes. Palladin has an important role in cytoskeletal regulation, particularly in stress fiber formation and stabilization. This assumption is supported by several experimental results. First, over-expression of palladin in non-muscle cells results in rapid reorganization of the actin cytoskeleton and formation of thick actin bundles. Second, the knock-down of palladin with anti-sense and siRNA techniques or knock-out by genetic methods leads to defective stress fiber formation. Furthermore, palladin is usually up-regulated in situations requiring a highly organized cytoskeleton, such as differentiation of dendritic cells, trophoblasts and myofibroblasts, and activation of astrocytes during glial scar formation. The protein family members have also direct disease linkages; myotilin missense mutations are the cause of LGMD1A and myofibrillar myopathy. Palladin mutations and polymorphisms, on the other hand, have been linked to hereditary pancreatic cancer and myocardial infarction, respectively. In this study we set out to characterize human palladin. We identified several palladin isoforms, studied their tissue distribution and sub-cellular localization. Four novel interaction partners were identified; ezrin, ArgBP2, SPIN90 and Src-kinase.The previously identified interaction between palladin and α-actinin was also characterized in detail. All the identified new binding partners are actin cytoskeleton associated proteins; ezrin links the plasma membrane to the cytoskeleton, ArgBP2 and SPIN90 localize, among other structures, to the lamellipodia and in cardiomyocytes to the Z-disc. Src is a transforming tyrosine kinase, which besides its role in oncogenesis has also important cytoskeletal associations. We also studied palladin in myofibroblasts, which are specialized cells involved in diverse physiological and pathological processes, such as wound healing and tissue fibrosis. We demonstrated that palladin is up-regulated during the differentiation of myofibroblasts in an isoform specific manner, and that this up-regulation is induced by TGF-β via activation of both the SMAD and MAPK signalling cascades. In summary, the results presented here describe the initial characterization of human palladin and offer a basis for further studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.