993 resultados para Stokes flow
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
The surface tension gradient driven flow that occurs during laser melting has been studied. The vorticity-streamfunction form of the Navier-Stokes equations and the energy equation has been solved by the ‘Alternative Direction Implicit’ method. It has been shown that the inertia forces in the melt strongly influence the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be negligible compared to the surface tension gradient driven flow in laser melting.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
Theoretical studies have been carried out to examine internal flow choking in the inert simulators of a dual-thrust motor. Using a two-dimensional k-omega turbulence model, detailed parametric studies have been carried out to examine aerodynamic choking and the existence of a fluid throat at the transition region during the startup transient of dual-thrust motors. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second-order-implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-averaged, Navier-Stokes equations is employed. It was observed that, at the subsonic inflow conditions, there is a possibility of the occurrence of internal flow choking in dual-thrust motors due to the formation of a fluid throat at the beginning of the transition region induced by area blockage caused by boundary-layer-displacement thickness. It has been observed that a 55% increase in the upstream port area of the dual-thrust motor contributes to a 25% reduction in blockage factor at the transition region, which could negate the internal How choking and supplement with an early choking of the dual-thrust motor nozzle. If the height of the upstream port relative to the motor length is too small, the developing boundary layers from either side of the port can interact, leading to a choked,flow. On the other hand, if the developing boundary layers are far enough apart, then choking does not occur. The blockage factor is greater in magnitude for the choked case than for the unchoked case. More tangible explanations are presented in this paper for the boundary-layer blockage and the internal flow choking in dual-thrust motors, which hitherto has been unexplored.
Resumo:
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (eta, tau). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.
Resumo:
An exact solution of the unsteady Navier-Stokes equations is obtained for the flow due to non-coaxial rotations of a porous disk, executing non-torsional oscillations in its own plane, and a fluid at infinity. It is shown that the infinite number of solutions existing for a flow confined between two disks reduce to a single unique solution in the case of a single disk. The adjustment of the unsteady flow near the rotating disk to the flow at infinity rotating about a different axis is explained.
Resumo:
The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.
Resumo:
The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration, The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.
Resumo:
In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.
Resumo:
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder is investigated when both the free stream velocity and the velocity of the cylinder vary arbitrarily with time. The cylinder moves either in the same direction as that of the free stream or in the opposite direction. The flow is initially (t = 0) steady and then at t > 0 it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations has been obtained numerically using an implicit finite-difference scheme. Also the self-similar solution of the Navier-Stokes equations is obtained when the velocity of the cylinder and the free stream velocity vary inversely as a linear function of time. For small Reynolds number, a closed form solution is obtained. When the Reynolds number tends to infinity, the Navier-Stokes equations reduce to those of the two-dimensional stagnation-point flow. The shear stresses corresponding to stationary and the moving cylinder increase with the Reynolds number. The shear stresses increase with time for the accelerating flow but decrease with increasing time for the decelerating flow. For the decelerating case flow reversal occurs in the velocity profiles after a certain instant of time. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
A fluctuating-force model is developed for representing the effect of the turbulent fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in the limit of high Stokes number, where the particle relaxation time is large compared with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating force is incorporated in the equation of motion for the particles, and the force distribution is assumed to be an anisotropic Gaussian white noise. It is shown that this is equivalent to incorporating a diffusion term in the Boltzmann equation for the particle velocity distribution functions. The variance of the force distribution, or equivalently the diffusion coefficient in the Boltzmann equation, is related to the time correlation functions for the fluid velocity fluctuations. The fluctuating-force model is applied to the specific case of a Couette flow of a turbulent particle–gas suspension, for which both the fluid and particle velocity distributions were evaluated using direct numerical simulations by Goswami & Kumaran (2010). It is found that the fluctuating-force simulation is able to quantitatively predict the concentration, mean velocity profiles and the mean square velocities, both at relatively low volume fractions, where the viscous relaxation time is small compared with the time between collisions, and at higher volume fractions, where the time between collisions is small compared with the viscous relaxation time. The simulations are also able to predict the velocity distributions in the centre of the Couette, even in cases in which the velocity distribution is very different from a Gaussian distribution.
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.