969 resultados para Stochastic particle dynamics (theory)
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
Resumo:
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Resumo:
That individuals contribute in social dilemma interactions even when contributing is costly is a well-established observation in the experimental literature. Since a contributor is always strictly worse off than a non-contributor the question is raised if an intrinsic motivation to contribute can survive in an evolutionary setting. Using recent results on deterministic approximation of stochastic evolutionary dynamics we give conditions for equilibria with a positive number of contributors to be selected in the long run.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Työn tavoitteena oli tutkia neljän eri koesuotimen soveltuvuutta pigmenttilietteen kiintoainepitoisuuden nostoon. Työssä käytetyt suotimet olivat Larox PF 0,1, Certus-CU-0047, Crossflow-koesuodin ja Steuerung ET06-linko. Suodinväliaineena Larox PF 0,1-suotimessa ja Crossflow-koesuotimessa käytettiin Tamfelt Oyj:n suodinkankaita. Certus-CU-0047-suotimessa suodinväliaineena toimi keraaminen membraani. Työn kirjallisuusosassa tarkasteltiin partikkelien karakterisointia, suodatuksen teoriaa, kakkusuodatusta, suodinväliaineista suodinkankaita ja membraaneja. Lisäksi tarkasteltiin paperin päällystämiseen käytettyjen pigmenttien ominaisuuksia ja niiden suodatusta. Kokeet suoritettiin Larox PF 0,1, Certus-CU-0047 ja Crossflow-koesuotimella vakiopainesuodatuksena yhdellä paineella. Steuerung ET06-lingon kokeet suoritettiin vakiovirtaussuodatuksena käyttäen kolmea eri virtausnopeutta ja kolmea eri lingon ja ruuvin kierrossuhdetta. Työssä suodatettiin neljää erilaista pigmenttilietettä. Suodoksista otettiin näytteitä niiden sameuden määrittämiseksi. Larox Pf 0,1-suotimella ja Steuerung ET06-dekantterilingolla saatiin nostettua pigmenttilietteen kiintoainepitoisuutta erittäin hyvin. Loput kaksi suodinta eivät sovellu tähän tarkoitukseen ollenkaan. Vakiopainesuodatuksissa suodatusajat muodostuivat kuitenkin liian pitkiksi. Suodoksien kiintoainepitoisuudet olivat suurimmaksi osaltaan pieniä lukuun ottamatta tiettyjä suodinkankaita. Lietteen 2 kiintoainepitoisuuden nostaminen oli kaikilla suotimilla erittäin vaikeaa, muut lietteet suodattuivat kohtuullisen hyvin. Näiden kokeiden perusteella voidaan sanoa, että varsinkin vakiovirtaussuodatus soveltuu hyvin ainakin tiettyjen pigmenttilietteiden kiintoainepitoisuuden nostoon.
Resumo:
Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.
Resumo:
El proceso administrativo y de compras de OPL Carga tiene algunas falencias entre ellas: fallas en la Comunicación entre el personal operativo, no se realizan llamadas internas usando con frecuencia el email, produciendo la saturación de solicitudes las cuales terminan sin ser resueltas en cuanto a roles se refiere, no hay enfoque de procesos en vista que no se tiene claras las tareas de cada cargo, adicionalmente no hay claridad en los subprocesos, perjudicando el proceso con el aumento de costos, pérdida de tiempo, las responsabilidades de los funcionario no todas las veces se ejecutan en el tiempo asignado, el liderazgo compartido presenta ambigüedades. Objetivos: Definir el trabajo en equipo en el proceso administrativo y de compras en OPL carga de Bucaramanga. La investigación que a realizar es de tipo descriptivo, busca descubrir las falencias o características que permiten diseñar y desarrollar un modelo de solución para los problemas del equipo de OPL Carga S.A.S. Materiales y métodos: La investigación efectuada es de tipo descriptivo, el objetivo es definir el modelo del trabajo en equipo y describir las falencias en el proceso administrativo y de compras en OPL carga de Bucaramanga, que permitan obtener un diagnóstico integral que conlleve a la implementación de estrategias de solución. Resultados: Se identificaron las falencias en los siguientes aspectos: Variable comunicación, rendimiento, destrezas complementarias, propósito significativo y meta específicas de los funcionarios en OPL carga sección administrativa. Conclusiones: El modelo de trabajo en equipo que OPL aplica es jerárquico, en el que se ofrece estabilidad, seguridad, se toman decisiones en forma piramidal, mediante la planeación de tareas, la colaboración, igualdad y respeto por los miembros, trabajando en pro de la solución de problemas. Se construyó un plano conceptual que permitió exponer la interpretación que la estudiante tiene de las teorías, investigaciones y antecedentes válidos para la comprensión del problema investigado. Área comunicacional: Coordinar acciones tendientes para que los funcionarios respondan a tiempo los emails atenientes a su trabajo. Área condiciones de trabajo: Clarificar y diseñar las reglas de comportamiento al interior de los equipos de trabajo que redunden en el mejoramiento del mismo y la búsqueda de soluciones oportunas. Área metas específicas: Procurar mediante auditorías el cumplimiento de las metas y objetivos propuestos por cada equipo de trabajo.
Resumo:
Este trabajo recopila literatura académica relevante sobre estrategias de entrada y metodologías para la toma de decisión sobre la contratación de servicios de Outsourcing para el caso de empresas que planean expandirse hacia mercados extranjeros. La manera en que una empresa planifica su entrada a un mercado extranjero, y realiza la consideración y evaluación de información relevante y el diseño de la estrategia, determina el éxito o no de la misma. De otro lado, las metodologías consideradas se concentran en el nivel estratégico de la pirámide organizacional. Se parte de métodos simples para llegar a aquellos basados en la Teoría de Decisión Multicriterio, tanto individuales como híbridos. Finalmente, se presenta la Dinámica de Sistemas como herramienta valiosa en el proceso, por cuanto puede combinarse con métodos multicriterio.
Resumo:
Apraxia of speech (AOS) is typically described as a motor-speech disorder with clinically well-defined symptoms, but without a clear understanding of the underlying problems in motor control. A number of studies have compared the speech of subjects with AOS to the fluent speech of controls, but only a few have included speech movement data and if so, this was primarily restricted to the study of single articulators. If AOS reflects a basic neuromotor dysfunction, this should somehow be evident in the production of both dysfluent and perceptually fluent speech. The current study compared motor control strategies for the production of perceptually fluent speech between a young woman with apraxia of speech (AOS) and Broca’s aphasia and a group of age-matched control speakers using concepts and tools from articulation-based theories. In addition, to examine the potential role of specific movement variables on gestural coordination, a second part of this study involved a comparison of fluent and dysfluent speech samples from the speaker with AOS. Movement data from the lips, jaw and tongue were acquired using the AG-100 EMMA system during the reiterated production of multisyllabic nonwords. The findings indicated that although in general kinematic parameters of fluent speech were similar in the subject with AOS and Broca’s aphasia to those of the age-matched controls, speech task-related differences were observed in upper lip movements and lip coordination. The comparison between fluent and dysfluent speech characteristics suggested that fluent speech was achieved through the use of specific motor control strategies, highlighting the potential association between the stability of coordinative patterns and movement range, as described in Coordination Dynamics theory.
Resumo:
This paper traces the evolution of thegeneric structure concept in system dynamics and discusses the different practical uses to which they have been put. A review of previous work leads to the identification of three different views of what a ‘generic structure’ is and, hence, what transferability means. These different views are distinguishable in application as well as in theory. Examination of these interpretations shows that the assumptions behind them are quite distinct. From this analysis it is argued that it is no longer useful to treat ‘generic structure’ as a single concept since the unity it implies is only superficial. The conclusion is that the concept needs unbundling so that different assumptions about transferability of structure can be made explicit, and the role of generic structures as generalisable theories of dynamic behaviour in system dynamics theory and practice can be debated and clarified more effectively.