965 resultados para Stochastic differential equation with hysteresis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no 37th Conference on Stochastic Processes and their Applications - July 28 - August 01, 2014 -Universidad de Buenos Aires

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the study of the basic theory of existence, uniqueness and continuation of solutions of di®erential equations with piecewise constant argument. Results about asymptotic stability of the equation x(t) =-bx(t) + f(x([t])) with argu- ment [t], where [t] designates the greatest integer function, are established by means of dichotomic maps. Other example is given to illustrate the application of the method. Copyright © 2011 Watam Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fractional calculus when modeling phenomena allows new queries concerning the deepest parts of the physical laws involved in. Here we will be dealing with an apparent paradox in which the time of transference from zero in a system with fractional derivatives can be strictly shortened relatively to the minimal time transference done in an equivalent system in the frame of the entire derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir betrachten einen zeitlich inhomogenen Diffusionsprozess, der durch eine stochastische Differentialgleichung gegeben wird, deren Driftterm ein deterministisches T-periodisches Signal beinhaltet, dessen Periodizität bekannt ist. Dieses Signal sei in einem Besovraum enthalten. Wir schätzen es mit Hilfe eines nichtparametrischen Waveletschätzers. Unser Schätzer ist von einem Wavelet-Dichteschätzer mit Thresholding inspiriert, der 1996 in einem klassischen iid-Modell von Donoho, Johnstone, Kerkyacharian und Picard konstruiert wurde. Unter gewissen Ergodizitätsvoraussetzungen an den Prozess können wir nichtparametrische Konvergenzraten angegeben, die bis auf einen logarithmischen Term den Raten im klassischen iid-Fall entsprechen. Diese Raten werden mit Hilfe von Orakel-Ungleichungen gezeigt, die auf Ergebnissen über Markovketten in diskreter Zeit von Clémencon, 2001, beruhen. Außerdem betrachten wir einen technisch einfacheren Spezialfall und zeigen einige Computersimulationen dieses Schätzers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4−2 ɛ of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's −5/3 law is, thus, recovered for ɛ=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the −5/3 law emerges in the presence of a saturation in the ɛ dependence of the scaling dimension of the eddy diffusivity at ɛ=3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we construct implicit stochastic Runge-Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.