840 resultados para Sports Analytics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Participation in extreme sports is continuing to grow, yet there is still little understanding of participant motivations in such sports. The purpose of this paper is to report on one aspect of motivation in extreme sports, the search for freedom. The study utilized a hermeneutic phenomenological methodology. Fifteen international extreme sport participants who participated in sports such as BASE jumping, big wave surfing, extreme mountaineering, extreme skiing, rope free climbing and waterfall kayaking were interviewed about their experience of participating in an extreme sport. Results reveal six elements of freedom: freedom from constraints, freedom as movement, freedom as letting go of the need for control, freedom as the release of fear, freedom as being at one, and finally freedom as choice and responsibility. The findings reveal that motivations in extreme sport do not simply mirror traditional images of risk taking and adrenaline and that motivations in extreme sports also include an exploration of the ways in which humans seek fundamental human values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses what can be learned from research on extreme sports that take place in the natural world. An hermeneutic phenomenological method was used where data were gathered from interviews with 15 extreme sports participants and other first hand accounts. The extreme sports included B.A.S.E. jumping, big wave surfing, extreme skiing, waterfall kayaking, extreme mountaineering and solo rope-free climbing. In contrast to theorists who write about the natural world as a resource, battlefield or playground, extreme sports participants speak about developing a relationship with the natural world where humanity is considered to be part of the natural world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitter and other social media have become increasingly important tools for maintaining the relationships between fans and their idols across a range of activities, from politics and the arts to celebrity and sports culture. Twitter, Inc. itself has initiated several strategic approaches, especially to entertainment and sporting organisations; late in 2012, for example, a Twitter, Inc. delegation toured Australia in order to develop formal relationships with a number of key sporting bodies covering popular sports such as Australian Rules Football, A-League football (soccer), and V8 touring car racing, as well as to strengthen its connections with key Australian broadcasters and news organisations (Jackson & Christensen, 2012). Similarly, there has been a concerted effort between Twitter Germany and the German Bundesliga clubs and football association to coordinate the presence of German football on Twitter ahead of the 2012–2013 season: the Twitter accounts of almost all first-division teams now bear the official Twitter verification mark, and a system of ‘official’ hashtags for tweeting about individual games (combining the abbreviations of the two teams, e.g. #H96FCB) has also been instituted (Twitter auf Deutsch, 2012).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporating a learner’s level of cognitive processing into Learning Analytics presents opportunities for obtaining rich data on the learning process. We propose a framework called COPA that provides a basis for mapping levels of cognitive operation into a learning analytics system. We utilise Bloom’s taxonomy, a theoretically respected conceptualisation of cognitive processing, and apply it in a flexible structure that can be implemented incrementally and with varying degree of complexity within an educational organisation. We outline how the framework is applied, and its key benefits and limitations. Finally, we apply COPA to a University undergraduate unit, and demonstrate its utility in identifying key missing elements in the structure of the course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media platforms are of interest to interactive entertainment companies for a number of reasons. They can operate as a platform for deploying games, as a tool for communicating with customers and potential customers, and can provide analytics on how players utilize the; game providing immediate feedback on design decisions and changes. However, as ongoing research with Australian developer Halfbrick, creators of $2 , demonstrates, the use of these platforms is not universally seen as a positive. The incorporation of Big Data into already innovative development practices has the potential to cause tension between designers, whilst the platform also challenges the traditional business model, relying on micro-transactions rather than an up-front payment and a substantial shift in design philosophy to take advantage of the social aspects of platforms such as Facebook.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper draws on comparative analyses of Twitter data sets – over time and across different kinds of natural disasters and different national contexts – to demonstrate the value of shared, cumulative approaches to social media analytics in the context of crisis communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capacity to produce data for performance analysis in sports has been enhanced in the last decade with substantial technological advances. However, current performance analysis methods have been criticised for the lack of a viable theoretical framework to assist on the development of fundamental principles that regulate performance achievement. Our aim in this paper is to discuss ecological dynamics as an explanatory framework for improving analysis and understanding of competitive performance behaviours. We argue that integration of ideas from ecological dynamics into previous approaches to performance analysis advances current understanding of how sport performance emerges from continuous interactions between individual players and teams. Exemplar data from previous studies in association football are presented to illustrate this novel perspective on performance analysis. Limitations of current ecological dynamics research and challenges for future research are discussed in order to improve the meaningfulness of information presented to coaches and managers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern health information systems can generate several exabytes of patient data, the so called "Health Big Data", per year. Many health managers and experts believe that with the data, it is possible to easily discover useful knowledge to improve health policies, increase patient safety and eliminate redundancies and unnecessary costs. The objective of this paper is to discuss the characteristics of Health Big Data as well as the challenges and solutions for health Big Data Analytics (BDA) – the process of extracting knowledge from sets of Health Big Data – and to design and evaluate a pipelined framework for use as a guideline/reference in health BDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road networks are a national critical infrastructure. The road assets need to be monitored and maintained efficiently as their conditions deteriorate over time. The condition of one of such assets, road pavement, plays a major role in the road network maintenance programmes. Pavement conditions depend upon many factors such as pavement types, traffic and environmental conditions. This paper presents a data analytics case study for assessing the factors affecting the pavement deflection values measured by the traffic speed deflectometer (TSD) device. The analytics process includes acquisition and integration of data from multiple sources, data pre-processing, mining useful information from them and utilising data mining outputs for knowledge deployment. Data mining techniques are able to show how TSD outputs vary in different roads, traffic and environmental conditions. The generated data mining models map the TSD outputs to some classes and define correction factors for each class.