964 resultados para Spectrum analysis
Resumo:
Objective: To investigate the effect of aerobic physical training on cardiovascular autonomic control in ovariectomized rats using different approaches. Design: Female Wistar rats were divided into four groups: sedentary sham rats (group SSR), trained sham rats (group TSR), sedentary ovariectomized rats (group SOR), and trained ovariectomized rats (group TOR). Animals from the trained groups were submitted to a physical training protocol (swimming) for 12 weeks. Results: Pharmacological evaluation showed that animals from group TSR had an increase in their cardiac vagal tonus compared with the animals from groups SSR and SOR. The analysis of heart rate variability (HRV) showed that groups TSR and SOR had fewer low-frequency oscillations (0.20-0.75 Hz) compared with groups SSR and TOR. When groups TSR and SOR were compared, the former was found to have fewer oscillations. With regard to high-frequency oscillations (0.75-2.5 Hz), group SSR had a reduction compared with the other groups, whereas group TSR had the greatest oscillation compared with groups SOR and TOR, with all values expressed in normalized units. Analysis of HRV was performed after pharmacological blockade, and low-frequency oscillations were found to be predominantly sympathetic in sedentary animals, whereas there was no predominance in trained animals. Conclusion: Ovariectomy did not change the tonic autonomic control of the heart and, in addition, reduced the participation of sympathetic component in cardiac modulation. Physical training, on the other hand, increased the participation of parasympathetic modulation on the HRV, including ovariectomized rats.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
PURPOSE: to describe the patterns of the gastric myoelectrical activity, pre-and postprandially, in clinically stable neonates of different gestational ages, during their first two weeks of life by means of Electrogastrography. PATIENTS AND METHODS: Electrogastrography was recorded in forty-five clinically stable neonates of different gestational ages (group I: 15 neonates of > 37 weeks, group II: 15 premature neonates of 32-37 weeks; Group III: 15 premature neonates of 28-31 weeks) receiving intermittent enteral feedings during their first two weeks of life. Electrogastrography recordings were performed for 1 hour pre-and postprandially. The Electrogastrography signal was recorded using the portable MicroDigitrapper Electrogastrography recording device and after motion artifacts were deleted, the remaining Electrogastrography data were submitted to quantitative analysis based on the "Running Spectrum Analysis". RESULTS: The percentages of normogastria, pre-and postprandially were greater than the percentages of gastric dysrythmias in all three studied groups. Furthermore, all neonates had the mean values of the Electrogastrography dominant frequency predominantly within the normogastria range, in both periods analyzed. There were no significant differences in the relative change of the Electrogastrography dominant power among the groups. CONCLUSION: This study demonstrates that the Electrogastrography patterns are similar between premature and full term neonates during the pre-and postprandial periods. The results of this study also indicate that the gastric myoelectrical activity in premature and full term neonates is immature, as compared to that described for older neonates, children and adults.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b(5), localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b(5) reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.
Resumo:
Diruthenium tetracarbonyl complexes of the type [Ru2(CO)4(l2-g2-O2CR)2L2] containing a Ru-Ru backbone with four equatorial carbonyl ligands, two carboxylato bridges, and two axial two-electron ligands in a sawhorse-like geometry have been synthesized with porphyrin-derived substituents in the axial ligands [1: R is CH3, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin], in the bridging carboxylato ligands [2: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is PPh3; 3: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane], or in both positions [4: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin]. Compounds 1-3 were assessed on different types of human cancer cells and normal cells. Their uptake by cells was quantified by fluorescence and checked by fluorescence microscopy. These compounds were taken up by human HeLa cervix and A2780 and Ovcar ovarian carcinoma cells but not by normal cells and other cancer cell lines (A549 pulmonary, Me300 melanoma, PC3 and LnCap prostate, KB head and neck, MDAMB231 and MCF7 breast, or HT29 colon cancer cells). The compounds demonstrated no cytotoxicity in the absence of laser irradiation but exhibited good phototoxicities in HeLa and A2780 cells when exposed to laser light at 652 nm, displaying an LD50 between 1.5 and 6.5 J/cm2 in these two cell lines and more than 15 J/cm2 for the others. Thus, these types of porphyric compound present specificity for cancer cell lines of the female reproductive system and not for normal cells; thus being promising new organometallic photosensitizers.
Resumo:
Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes
Resumo:
Recent studies of relativistic jet sources in the Galaxy, also known as microquasars, have been very useful in trying to understand the accretion/ejection processes that take place near compact objects. However, the number of sources involved in such studies is still small. In an attempt to increase the number of known microquasars we have carried out a search for new Radio Emitting X-ray Binaries (REXBs). These sources are the ones to be observed later with VLBI techniques to unveil their possible microquasar nature. To this end, we have performed a cross-identification between the X-ray ROSAT all sky survey Bright Source Catalog (RBSC) and the radio NRAO VLA Sky Survey (NVSS) catalogs under very restrictive selection criteria for sources with |b|<5 degrees. We have also conducted a deep observational radio and optical study for six of the selected candidates. At the end of this process two of the candidates appear to be promising, and deserve additional observations aimed to confirm their proposed microquasar nature.
Resumo:
We present optical spectroscopy of MWC 656 and MWC 148, the proposed optical counterparts of the gamma-ray sources AGL J2241+4454 and HESS J0632+0 57, respectively. The main parameters of the Halpha emission line (EW, FWHM and centroid velocity) in these stars are modulated on the proposed orbital periods of 60.37 and 321 days, respectively. These modulations are likely produced by the resonant interaction of the Be discs with compact stars in eccentric orbits. We also present radial velocity curves of the optical stars folded on the above periods and obtain the first orbital elements of the two gamma-ray sources thus confirming their binary nature. Our orbital solution support eccentricities e~0.4 and 0.83+-0.08 for MWC 656 and MWC 148, respectively. Further, our orbital elements imply that the X-ray outbursts in HESS J0632+057/MWC 148 are delayed ~0.3 orbital phases after periastron passage, similarly to the case of LS I +61 303. In addition, the optical photometric light curve maxima in AGL J2241+4454/MWC 656 occur ~0.25 phases passed periastron, similar to what is seen in LS I +61 303. We also find that the orbital eccentricity is correlated with orbital period for the known gamma-ray binaries. This is explained by the fact that small stellar separations are required for the efficient triggering of VHE radiation. Another correlation between the EW of Halpha and orbital period is also observed, similarly to the case of Be/X-ray binaries. These correlations are useful to provide estimates of the key orbital parameters Porb and e from the Halpha line in future Be gamma-ray binary candidates.
Resumo:
En el presente trabajo se hace una revision bibliografica de los distintos métodos de identificación de Caolinita y Clorita en mezclas naturales y artificiales, valorando la distinta problematica que presentan cada uno de ellos, y aplicandolos a muestras patrones y mezclas naturales que presentan esta problematica a fin de obtener una mejor valoraci6n de los distintos métodos expuestos.
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.