996 resultados para Specific conductance
Resumo:
Specific mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the most common autosomal recessive fatal genetic disease of Caucasians, result in the loss of epithelial cell adenosine 3',5'-cyclic-monophosphate (cAMP)-stimulated Cl- conductance. We show that the influx of a fluorescent dye, dihydrorhodamine 6G (dR6G), is increased in cells expressing human CFTR after retrovirus- and adenovirus-mediated gene transfer. dR6G influx is stimulated by cAMP and is inhibited by antagonists of cAMP action. Dye uptake is ATP-dependent and inhibited by Cl- removal or the addition of 10 mM SCN-. Increased staining is associated with functional activation of CFTR Cl- permeability. dR6G staining enables both the fluorescent assessment of CFTR function and the identification of successfully corrected cells after gene therapy.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- channel that becomes activated after phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrate that PKA also plays a crucial role in maintaining basal expression of the CFTR gene in the human colon carcinoma cell line T84. Inhibition of PKA activity by expression of a dominant-negative regulatory subunit or treatment with the PKA-selective inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89) caused a complete suppression of CFTR gene expression without affecting other constitutively active genes. Basal expression of a 2.2-kb region of the CFTR promoter linked to a luciferase reporter gene (CFTR-luc) exhibited the same dependence on PKA. The ability of cAMP to induce CFTR over basal levels is cell-type specific. In T84 cells, both the endogenous CFTR gene and CFTR-luc exhibited only a modest inducibility (approximately 2-fold), whereas in the human choriocarcinoma cell line JEG-3, CFTR-luc could be induced at least 4-fold. A variant cAMP-response element is present at position -48 to -41 in the CFTR promoter, and mutation of this sequence blocks basal expression. We conclude that cAMP, acting through PKA, is an essential regulator of basal CFTR gene expression and may mediate an induction of CFTR in responsive cell types.
Resumo:
We have cloned two inwardly rectifying K+ channels that occur selectively in neurons in the brain and are designated BIRK (brain inwardly rectifying K+) channels. BIRK1 mRNA is extremely abundant and is enriched in specific brainstem nuclei, BIRK1 displays a consensus phosphate-binding loop, and expression in Xenopus oocytes has shown that its conductance is inhibited by ATP and adenosine 5'-[gamma-thio]triphosphate. BIRK2 is far less abundant and is selectively localized in telencephalic neurons. BIRK2 has a consensus sequence for cAMP-dependent phosphorylation.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.
Resumo:
A path model was developed to examine the impact of context-specific job stressors on the work outcomes of 132 customer service employees. Respondents who reported a moderate and high level of context-specific stressors report a higher level of job demand and work family conflict. Respondents who reported a higher level of job control tend to receive more work-related support and are more satisfied with their job. Surprisingly, respondents who experienced a higher level of work family conflict tend to receive less work-related support. We found that respondents who obtained more work-related support tend to report a higher level of job satisfaction. There was also a positive relationship between positive job satisfaction and a lower level of intention to quit.
Resumo:
First-degree relatives of men with prostate cancer have a higher risk of being diagnosed with prostate cancer than men without a family history. The present review examines the prevalence and predictors of testing in first-degree relatives, perceptions of risk, prostate cancer knowledge and psychological consequences of screening. Medline, PsycInfo and Cinahl databases were searched for articles examining risk perceptions or screening practices of first-degree relatives of men with prostate cancer for the period of 1990 to August 2007. Eighteen studies were eligible for inclusion. First-degree relatives participated in prostate-specific antigen (PSA) testing more and perceived their risk of prostate cancer to be higher than men without a family history. Family history factors (e.g. being an unaffected son rather than an unaffected brother) were consistent predictors of PSA testing. Studies were characterized by sampling biases and a lack of longitudinal assessments. Prospective, longitudinal assessments with well-validated and comprehensive measures are needed to identify factors that cue the uptake of screening and from this develop an evidence base for decision support. Men with a family history may benefit from targeted communication about the risks and benefits of prostate cancer testing that responds to the implications of their heightened risk.