938 resultados para Sparse linear system
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.
A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.
In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.
The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.
Resumo:
A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.
Resumo:
A scheduling method for implementing a generic linear QR array processor architecture is presented. This improves on previous work. It also considerably simplifies the derivation of schedules for a folded linear system, where detailed account has to be taken of processor cell latency. The architecture and scheduling derived provide the basis of a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition.
Resumo:
This paper investigates the linear degeneracies of projective structure estimation from point and line features across three views. We show that the rank of the linear system of equations for recovering the trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the admissibility constraints of the tensor are accounted for. The line configuration described by an LLC, rather than being some obscure case, is in fact quite typical. It includes, as a particular example, the case of a camera moving down a hallway in an office environment or down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and their remedy is important also in practice.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a pole placement method using both the augmented Jacobian and the corresponding system transfer function matrices. From the manipulation of these matrices a straightforward approach results to get the coefficients of a non-linear system, whose solution gives the parameters of the stabilizers that can provide a pre-specified minimum damping to the system. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper deals with approaches for sparse matrix substitutions using vector processing. Many publications have used the W-matrix method to solve the forward/backward substitutions on vector computer. Recently a different approach has been presented using dependency-based substitution algorithm (DBSA). In this paper the focus is on new algorithms able to explore the sparsity of the vectors. The efficiency is tested using linear systems from power systems with 118, 320, 725 and 1729 buses. The tests were performed on a CRAY Y MP2E/232. The speedups for a fast-forward/fast-backward using a 1729-bus system are near 19 and 14 for real and complex arithmetic operations, respectively. When forward/backward is employed the speedups are about 8 and 6 to perform the same simulations.