991 resultados para Sparse distributed memory
Resumo:
The optimization of resource allocation in sparse networks with real variables is studied using methods of statistical physics. Efficient distributed algorithms are devised on the basis of insight gained from the analysis and are examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.
Resumo:
This paper explores the role of transactive memory in enabling knowledge transfer between globally distributed teams. While the information systems literature has recently acknowledged the role transactive memory plays in improving knowledge processes and performance in colocated teams, little is known about its contribution to distributed teams. To contribute to filling this gap, knowledge-transfer challenges and processes between onsite and offshore teams were studied at TATA Consultancy Services. In particular, the paper describes the transfer of knowledge between onsite and offshore teams through encoding, storing and retrieving processes. An in-depth case study of globally distributed software development projects was carried out, and a qualitative, interpretive approach was adopted. The analysis of the case suggests that in order to overcome differences derived from the local contexts of the onsite and offshore teams (e.g. different work routines, methodologies and skills), some specific mechanisms supporting the development of codified and personalized ‘directories’ were introduced. These include the standardization of templates and methodologies across the remote sites as well as frequent teleconferencing sessions and occasional short visits. These mechanisms contributed to the development of the notion of ‘who knows what’ across onsite and offshore teams despite the challenges associated with globally distributed teams, and supported the transfer of knowledge between onsite and offshore teams. The paper concludes by offering theoretical and practical implications.
Resumo:
Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2, as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N >> 1) is just < n >=e=2.72... while in the mu=2 case, the mean number < n > of visited points grows proportionally to N(1/2). Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify concurrent programming, current STM implementations incur significant overheads that render them impractical for many real-sized programs. The key insight of this work is that we do not need to use the same costly barriers for all the memory managed by a real-sized application, if only a small fraction of the memory is under contention lightweight barriers may be used in this case. In this work, we propose a new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to access objects that are not under contention. We show that this approach is able to make the performance of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging benchmarks. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a fundamental component of episodic memory, in two versions of a real-world memory task requiring 18 month- to 5-year-old children to search for rewards hidden beneath cups distributed in an open-field arena. Whereas children 25-42-months-old were not capable of discriminating three reward locations among 18 possible locations in absence of local cues marking these locations, children older than 43 months found the reward locations reliably. These results support previous findings suggesting that allocentric spatial memory, if present, is only rudimentary in children under 3.5 years of age. However, when tested with only one reward location among four possible locations, children 25-39-months-old found the reward reliably in absence of local cues, whereas 18-23-month-olds did not. Our findings thus show that the ability to form a basic allocentric representation of the environment is present by 2 years of age, and its emergence coincides temporally with the offset of infantile amnesia. However, the ability of children to distinguish and remember closely related spatial locations improves from 2 to 3.5 years of age, a developmental period marked by persistent deficits in long-term episodic memory known as childhood amnesia. These findings support the hypothesis that the differential maturation of distinct hippocampal circuits contributes to the emergence of specific memory processes during early childhood.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.