974 resultados para Space problem
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.
Resumo:
Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Discourse in the provincial education system that includes Aboriginal peoples is a convoluted one-sided affair. This has contributed to the limited academic success for Aboriginal secondary students in the provincial school system. The Office of the Auditor General (2004) announced a 27-28 year gap in Academic success compared to non- Aboriginal students (p. I). Both Aboriginal and non-Aboriginal stakeholders are fiiistrated and confused with the lack of support for long-term solutions to address academic success for Aboriginal students. The boundaries in education that exist between the dominant society of Canada and Aboriginal peoples in education are hindering the development of ethical space in which to negotiate and apply "concrete arguments and concepts" (Ermine, 2000, p. 140) for 'best' solutions across the cultural divide. Recent literature suggests a gap in knowledge to address this cultural divide. This study reveals racism is still prevalent and the problem lies in the fallacy of Euro-Western pedagogical beliefs. There is a need to design ethical space that will assist transformation of cross-relations in education for inclusion of Aboriginal voices and content. I submit that ethical space involves physical and abstract space. This report is a qualitative, exploratory, and single case study of one northern Ontario secondary school attended by First Nations and Metis peoples who comprise 35% of the school population. Twenty-six stakeholders volunteered to participate in six interviews. The volunteers in this study are Aboriginal and non-Aboriginal. Aboriginal peoples are firom two First Nations, and Metis peoples. It is an Aboriginal designed and delivered study that a) describes an Aboriginally-designed research method to gather data across cultural divides in a secondary school, b) reviews Tri-Council Policy Section 6 (TCPS) regarding 'good practices' in ethical research involving Aboriginal peoples, and c) summarizes stakeholder perspectives of the 'best educational environment' for one secondary school.
Resumo:
The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
Globalization is widely regarded as the rise of the borderless world. However in practice, true globalization points rather to a “spatial logic” by which globalization is manifested locally in the shape of insular space. Globalization in this sense is not merely about the creation of physical fragmentation of space but also the creation of social disintegration. This study tries to proof that global processes also create various forms of insular space leading also to specific social implications. In order to examine the problem this study looks at two cases: China’s Pearl River Delta (PRD) and Jakarta in Indonesia. The PRD case reveals three forms of insular space namely the modular, concealed and the hierarchical. The modular points to the form of enclosed factories where workers are vulnerable for human-right violations due to the absent of public control. The concealed refers to the production of insular space by subtle discrimination against certain social groups in urban space. And the hierarchical points to a production of insular space that is formed by an imbalanced population flow. The Jakarta case attempts to show more types of insularity in relation to the complexity of a mega-city which is shaped by a culture of exclusion. Those are dormant and hollow insularity. The dormant refers to the genesis of insular– radical – community from a culture of resistance. The last type, the hollow, points to the process of making a “pseudo community” where sense of community is not really developed as well as weak social relationship with its surrounding. Although global process creates various expressions of territorial insularization, however, this study finds that the “line of flight” is always present, where the border of insularity is crossed. The PRD’s produces vernacular modernization done by peasants which is less likely to be controlled by the politics of insularization. In Jakarta, the culture of insularization causes urban informalities that have no space, neither spatially nor socially; hence their state of ephemerality continues as a tactic of place-making. This study argues that these crossings possess the potential for reconciling venue to defuse the power of insularity.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
Cubicle should provide good resting comfort as well as clean udders. Dairy cows in cubicle houses often face a restrictive environment with regard to resting behaviour, whereas cleanliness may still be impaired. This study aimed to determine reliable behavioural measures regarding resting comfort applicable in on-farm welfare assessments. Furthermore, relationships between cubicle design, cow sizes, management factors and udder cleanliness (namely teats and teat tips) were investigated. Altogether 15 resting measures were examined in terms of feasibility, inter-observer reliability (IOR) and consistency of results per farm over time. They were recorded during three farm visits on farms in Germany and Austria with cubicle, deep litter and tie stall systems. Seven measures occurred to infrequently to allow reliable recording within a limited observation time. IOR was generally acceptable to excellent except for 'collisions during lying down', which only showed good IOR after improvement of the definition. Only three measures were acceptably repeatable over time: 'duration of lying down', 'percentage of collisions during lying down' and 'percentage of cows lying partly or completely outside lying area'. These measures were evaluated as suitable animal based welfare measures regarding resting behaviour in the framework of an on-farm welfare assessment protocol. The second part of the thesis comprises a cross-sectional study on resting comfort and cow cleanliness including 23 Holstein Friesian dairy herds with very low within-farm variation in cubicle measures. Height at withers, shoulder width and diagonal body length were measured in 79-100 % of the cows (herd size 30 to115 cows). Based on the 25 % largest animals, compliance with recommendations for cubicle measures was calculated. Cleanliness of different body parts, the udder, teats and teat tips was assessed for each cow in the herd prior to morning milking. No significant correlation was found between udder soiling and teat or teat tip soiling on herd level. The final model of a stepwise regression regarding the percentage of dirty teats per farm explained 58.5 % the variance and contained four factors. Teat dipping after milking which might be associated with an overall clean and accurate management style, deep bedded cubicles, increasing cubicle maintenance times and decreasing compliance concerning total cubicle length predicted lower teat soiling. The final model concerning teat tip soiling explained 46.0 % of the variance and contained three factors. Increasing litter height in the rear part of the cubicle and increased alley soiling which is difficult to explain, predicted for less soiled teat tips, whereas increasing compliance concerning resting length was associated with higher percentages of dirty teat tips. The dependent variable ‘duration of lying down’ was analysed using again stepwise regression. The final model explained 54.8 % of the total variance. Lying down duration was significantly shorter in deep bedded cubicles. Further explanatory though not significant factors in the model were neck-rail height, deep bedding or comfort mattresses versus concrete floor or rubber mats and clearance height of side partitions. In the attempt to create a more comprehensive lying down measure, another analysis was carried out with percentage of ‘impaired lying down’ (i.e. events exceeding 6.3 seconds, with collisions or being interrupted) as dependent variable. The explanatory value of this final model was 41.3 %. An increase in partition length, in compliance concerning cubicle width and the presence of straw within bedding predicted a lower proportion of impaired lying down. The effect of partition length is difficult to interpret, but partition length and height were positively correlated on the study farms, possibly leading to a bigger zone of clear space for pelvis freedom. No associations could be found between impaired lying down and teat or teat tip soiling. Altogether, in agreement with earlier studies it was found that cubicle dimensions in practice are often inadequate with regard to the body dimensions of the cows, leading to high proportions of impaired lying down behaviour, whereas teat cleanliness is still unsatisfactory. Connections between cleanliness and cow comfort are far from simplistic. Especially the relationship between cubicle characteristics and lying down behaviour apparently is very complex, so that it is difficult to identify single influential factors that are valid for all farm situations. However, based on the results of the present study the use of deep bedded cubicles can be recommended as well as improved management with special regard to cubicle and litter maintenance in order to achieve both better resting comfort and teat cleanliness.
Resumo:
The incorporation of space allows the establishment of a more precise relationship between a contaminating input, a contaminating byproduct and emissions that reach the final receptor. However, the presence of asymmetric information impedes the implementation of the first-best policy. As a solution to this problem a site specific deposit refund system for the contaminating input and the contaminating byproduct are proposed. Moreover, the utilization of a successive optimization technique first over space and second over time enables definition of the optimal intertemporal site specific deposit refund system
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
Space applications are challenged by the reliability of parallel computing systems (FPGAs) employed in space crafts due to Single-Event Upsets. The work reported in this paper aims to achieve self-managing systems which are reliable for space applications by applying autonomic computing constructs to parallel computing systems. A novel technique, 'Swarm-Array Computing' inspired by swarm robotics, and built on the foundations of autonomic and parallel computing is proposed as a path to achieve autonomy. The constitution of swarm-array computing comprising for constituents, namely the computing system, the problem / task, the swarm and the landscape is considered. Three approaches that bind these constituents together are proposed. The feasibility of one among the three proposed approaches is validated on the SeSAm multi-agent simulator and landscapes representing the computing space and problem are generated using the MATLAB.