345 resultados para Smartphones
Resumo:
Background. Vertebral rotation found in structural scoliosis contributes to trunkal asymmetry which is commonly measured with a simple Scoliometer device on a patient's thorax in the forward flexed position. The new generation of mobile 'smartphones' have an integrated accelerometer, making accurate angle measurement possible, which provides a potentially useful clinical tool for assessing rib hump deformity. This study aimed to compare rib hump angle measurements performed using a Smartphone and traditional Scoliometer on a set of plaster torsos representing the range of torsional deformities seen in clinical practice. Methods. Nine observers measured the rib hump found on eight plaster torsos moulded from scoliosis patients with both a Scoliometer and an Apple iPhone on separate occasions. Each observer repeated the measurements at least a week after the original measurements, and were blinded to previous results. Intra-observer reliability and inter-observer reliability were analysed using the method of Bland and Altman and 95% confidence intervals were calculated. The Intra-Class Correlation Coefficients (ICC) were calculated for repeated measurements of each of the eight plaster torso moulds by the nine observers. Results. Mean absolute difference between pairs of iPhone/Scoliometer measurements was 2.1 degrees, with a small (1 degrees) bias toward higher rib hump angles with the iPhone. 95% confidence intervals for intra-observer variability were +/- 1.8 degrees (Scoliometer) and +/- 3.2 degrees (iPhone). 95% confidence intervals for inter-observer variability were +/- 4.9 degrees (iPhone) and +/- 3.8 degrees (Scoliometer). The measurement errors and confidence intervals found were similar to or better than the range of previously published thoracic rib hump measurement studies. Conclusions. The iPhone is a clinically equivalent rib hump measurement tool to the Scoliometer in spinal deformity patients. The novel use of plaster torsos as rib hump models avoids the variables of patient fatigue and discomfort, inconsistent positioning and deformity progression using human subjects in a single or multiple measurement sessions.
Resumo:
Mobile devices are becoming indispensable personal assistants in people's daily life as these devices support work, study, play and socializing activities. The multi-modal sensors and rich features of smartphones can capture abundant information about users' life experience, such as taking photos or videos on what they see and hear, and organizing their tasks and activities using calendar, to-do lists, and notes. Such vast information can become useful to help users recalling episodic memories and reminisce about meaningful experiences. In this paper, we propose to apply autobiographical memory framework to provide an effective mechanism to structure mobile life-log data. The proposed model is an attempt towards a more complete personal life-log indexing model, which will support long term capture, organization, and retrieval. To demonstrate the benefits of the proposed model, we propose some design solutions for enabling users-driven capture, annotation, and retrieval of autobiographical multimedia chronicles tools.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Smartphones become very critical part of our lives as they offer advanced capabilities with PC-like functionalities. They are getting widely deployed while not only being used for classical voice-centric communication. New smartphone malwares keep emerging where most of them still target Symbian OS. In the case of Symbian OS, application signing seemed to be an appropriate measure for slowing down malware appearance. Unfortunately, latest examples showed that signing can be bypassed resulting in new malware outbreak. In this paper, we present a novel approach to static malware detection in resource-limited mobile environments. This approach can be used to extend currently used third-party application signing mechanisms for increasing malware detection capabilities. In our work, we extract function calls from binaries in order to apply our clustering mechanism, called centroid. This method is capable of detecting unknown malwares. Our results are promising where the employed mechanism might find application at distribution channels, like online application stores. Additionally, it seems suitable for directly being used on smartphones for (pre-)checking installed applications.
Resumo:
Smartphones started being targets for malware in June 2004 while malware count increased steadily until the introduction of a mandatory application signing mechanism for Symbian OS in 2006. From this point on, only few news could be read on this topic. Even despite of new emerging smartphone platforms, e.g. android and iPhone, malware writers seemed to lose interest in writing malware for smartphones giving users an unappropriate feeling of safety. In this paper, we revisit smartphone malware evolution for completing the appearance list until end of 2008. For contributing to smartphone malware research, we continue this list by adding descriptions on possible techniques for creating the first malware(s) for Android platform. Our approach involves usage of undocumented Android functions enabling us to execute native Linux application even on retail Android devices. This can be exploited to create malicious Linux applications and daemons using various methods to attack a device. In this manner, we also show that it is possible to bypass the Android permission system by using native Linux applications.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.
Resumo:
In the last decade, smartphones have gained widespread usage. Since the advent of online application stores, hundreds of thousands of applications have become instantly available to millions of smart-phone users. Within the Android ecosystem, application security is governed by digital signatures and a list of coarse-grained permissions. However, this mechanism is not fine-grained enough to provide the user with a sufficient means of control of the applications' activities. Abuse of highly sensible private information such as phone numbers without users' notice is the result. We show that there is a high frequency of privacy leaks even among widely popular applications. Together with the fact that the majority of the users are not proficient in computer security, this presents a challenge to the engineers developing security solutions for the platform. Our contribution is twofold: first, we propose a service which is able to assess Android Market applications via static analysis and provide detailed, but readable reports to the user. Second, we describe a means to mitigate security and privacy threats by automated reverse-engineering and refactoring binary application packages according to the users' security preferences.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
Smartphones get increasingly popular where more and more smartphone platforms emerge. Special attention was gained by the open source platform Android which was presented by the Open Handset Alliance (OHA) hosting members like Google, Motorola, and HTC. Android uses a Linux kernel and a stripped-down userland with a custom Java VM set on top. The resulting system joins the advantages of both environments, while third-parties are intended to develop only Java applications at the moment. In this work, we present the benefit of using native applications in Android. Android includes a fully functional Linux, and using it for heavy computational tasks when developing applications can bring in substantional performance increase. We present how to develop native applications and software components, as well as how to let Linux applications and components communicate with Java programs. Additionally, we present performance measurements of native and Java applications executing identical tasks. The results show that native C applications can be up to 30 times as fast as an identical algorithm running in Dalvik VM. Java applications can become a speed-up of up to 10 times if utilizing JNI.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
Who watches pornography in Australia? If you listen to public debates about the genre the answer is clear – it’s children. Children are accessing pornography on smartphones (Murray and Tin 2011). Children are taking ‘lewd’ photographs of themselves, creating their own pornography (Nelligan and Etheridge 2011). Indigenous Australian children must be protected by banning pornography (the Age 2011). Pornographic magazines are placed where children can see them (O'Rourke 2011). Exposure to pornography is damaging children (Sundstrom 2011). The Australian Government insists that the Internet must be filtered to protect children from pornography (Collerton 2010). And if indeed any adults are watching pornography in Australia, then it’s child pornography (MacDonald 2011; Ralston and Howden 2011).In story after story, public debate about pornography focuses on children as its audience. There is no suggestion that children are numerically the largest audience of pornography in Australia. But emphatically the suggestion is that children are the most important audience to be taken into account when thinking about the genre. This chapter explores why this is the case, and notes the political advantages and disadvantages of focusing on children as the most important audience for pornography in Australia.
Resumo:
Mobile devices and smartphones have become a significant communication channel for everyday life. The sensing capabilities of mobile devices are expanding rapidly, and sensors embedded in these devices are cheaper and more powerful than before. It is evident that mobile devices have become the most suitable candidates to sense contextual information without needing extra tools. However, current research shows only a limited number of sensors are being explored and investigated. As a result, it still needs to be clarified what forms of contextual information extracted from mo- bile sensors are useful. Therefore, this research investigates the context sensing using current mobile sensors, the study follows experimental methods and sensor data is evaluated and synthesised, in order to deduce the value of various sensors and combinations of sensor for the use in context-aware mobile applications. This study aims to develop a context fusion framework that will enhance the context-awareness on mobile applications, as well as exploring innovative techniques for context sensing on smartphone devices.