919 resultados para Small-angle scattering.
Resumo:
A novel capillary flow device has been developed and applied to study the orientation of worm-like micelles, among other systems. Small-angle X-ray scattering (SAXS) data from micelles formed by a Pluronic block copolymer in aqueous salt solution provides evidence for the formation of worm-like micelles, which align under flow. A transition from a rod-like form factor to a less persistent conformation is observed under flow. Flow alignment of worm-like micelles formed by the low molar mass amphiphile system cetyl pyridinium chloride+sodium salicylate is studied for comparative purposes. Here, inhomogenous flow at the micron scale is revealed by streaks in the small-angle light scattering pattern perpendicular to the flow direction. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).
Resumo:
WThe capillary flow alignment of the thermotropic liquid crystal 4-n-octyl-4′-cyanobiphenyl in the nematic and smectic phases is investigated using time-resolved synchrotron small-angle x-ray scattering. Samples were cooled from the isotropic phase to erase prior orientation. Upon cooling through the nematic phase under Poiseuille flow in a circular capillary, a transition from the alignment of mesogens along the flow direction to the alignment of layers along the flow direction (mesogens perpendicular to flow) appears to occur continuously at the cooling rate applied. The transition is centered on a temperature at which the Leslie viscosity coefficient α3 changes sign. The configuration with layers aligned along the flow direction is also observed in the smectic phase. The transition in the nematic phase on cooling has previously been ascribed to an aligning-nonaligning or tumbling transition. At high flow rates there is evidence for tumbling around an average alignment of layers along the flow direction. At lower flow rates this orientation is more clearly defined. The layer alignment is ascribed to surface-induced ordering propagating into the bulk of the capillary, an observation supported by the parallel alignment of layers observed for a static sample at low temperatures in the nematic phase.
Resumo:
Electrospinning is a technique employed to produce nanoscale to microscale sized fibres by the application of a high voltage to a spinneret containing a polymer solution. Here we examine how small angle neutron scattering data can be modelled to analyse the polymer chain conformation. We prepared 1:1 blends of deuterated and hydrogenated atactic-polystyrene fibres from solutions in N, N-Dimethylformamide and Methyl Ethyl Ketone. The fibres themselves often contain pores or voiding within the internal structure on the length scales that can interfere with scattering experiments. A model to fit the scattering data in order to obtain values for the radius of gyration of the polymer molecules within the fibres has been developed, that includes in the scattering from the voids. Using this model we find that the radius of gyration is 20% larger than in the bulk state and the chains are slightly extended parallel to the fibre axis.
Resumo:
A straightforward procedure (assuming spherical symmetry) is described, which enables the unwanted small-angle component of the scattering for a finite model to be calculated. The method may be applied to models of any shape or size. It is illustrated by means of a single polymer chain.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r(w)) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from similar to2.1 to similar to2.4 and mass-fractal correlation length xi diminishing from similar to13 nm to similar to2 nm, as r(w) is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500degreesC, in general, increases the mass-fractal dimension D, diminishes the characteristic length xi of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as similar to2.4 and similar to2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the secondary particle developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from similar to2.4 to similar to2.0 and from similar to2.7 to similar to2.5, respectively, as the aerogel bulk density increases from 0.25 (r(w)=66) up to 0.91 g/cm(3) (r(w)=6).