992 resultados para Simulation integration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated-annealing-based conditional simulations provide a flexible means of quantitatively integrating diverse types of subsurface data. Although such techniques are being increasingly used in hydrocarbon reservoir characterization studies, their potential in environmental, engineering and hydrological investigations is still largely unexploited. Here, we introduce a novel simulated annealing (SA) algorithm geared towards the integration of high-resolution geophysical and hydrological data which, compared to more conventional approaches, provides significant advancements in the way that large-scale structural information in the geophysical data is accounted for. Model perturbations in the annealing procedure are made by drawing from a probability distribution for the target parameter conditioned to the geophysical data. This is the only place where geophysical information is utilized in our algorithm, which is in marked contrast to other approaches where model perturbations are made through the swapping of values in the simulation grid and agreement with soft data is enforced through a correlation coefficient constraint. Another major feature of our algorithm is the way in which available geostatistical information is utilized. Instead of constraining realizations to match a parametric target covariance model over a wide range of spatial lags, we constrain the realizations only at smaller lags where the available geophysical data cannot provide enough information. Thus we allow the larger-scale subsurface features resolved by the geophysical data to have much more due control on the output realizations. Further, since the only component of the SA objective function required in our approach is a covariance constraint at small lags, our method has improved convergence and computational efficiency over more traditional methods. Here, we present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on a synthetic data set, and then applied to data collected at the Boise Hydrogeophysical Research Site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this project is the integration of a set of technologies (graphics, physical simulation, input), with the azm of assembling an application framework in phyton. In this research, a set of key introductory concepts are presented in adoption of a deep study of the state of the art of 3D applications. Phyton is selected an justified as the programing language due to the features and advantages that it offers in front of other languages. Finally the design and implementation of the framework is presented in the last chapter with some client application examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Työssä tutkittiin kiekkosuodattimeen liittyviä ulkoisia simulointimalleja integroidussa simulointiympäristössä. Työn tarkoituksena oli parantaa olemassa olevaa mekanistista kiekkosuodatinmallia. Malli laadittiin dynaamiseen paperiteollisuuden tarpeisiin tehtyyn simulaattoriin (APMS), jossa olevaan alkuperäiseen mekanistiseen malliin tehtiin ulkoinen lisämalli, joka käyttää hyväkseen kiekkosuodatinvalmistajan mittaustuloksia. Laitetiedon saatavuutta suodattimien käyttäjille parannettiin luomalla Internetissä sijaitsevalle palvelimelle kiekkosuodattimen laitetietomäärittelyt. Suodatinvalmistaja voi palvella asiakkaitaan viemällä laitetiedot palvelimelle ja yhdistämällä laitetiedon simulointimalliin. Tämä on mahdollista Internetin ylitse käytettävän integroidun simulointiympäristön avulla, jonka on tarkoitus kokonaisvaltaisesti yhdistää simulointi ja prosessisuunnittelu. Suunnittelijalle tarjotaan työkalut, joilla dynaaminen simulointi, tasesimulointi ja kaavioiden piirtäminen onnistuu prosessilaitetiedon ollessa saatavilla. Nämä työkalut on tarkoitus toteuttaa projektissa nimeltä Galleria, jossa luodaan prosessimalli- ja laitetietopalvelin Internetiin. Gallerian käyttöliittymän avulla prosessisuunnittelija voi käyttää erilaisia simulointiohjelmistoja ja niihin luotuja valmiita malleja, sekä saada käsiinsä ajan tasalla olevaa laitetietoa. Ulkoinen kiekkosuodatinmalli laskee suodosvirtaamat ja suodosten pitoisuudet likaiselle, kirkkaalle ja superkirkkaalle suodokselle. Mallin syöttöparametrit ovat kiekkojen pyörimisnopeus, sisään tulevan syötön pitoisuus, suotautuvuus (freeness) ja säätöparametri, jolla säädetään likaisen ja kirkkaan suodoksen keskinäinen suhde. Suotautuvuus kertoo mistä massasta on kyse. Mitä suurempi suotautuvuus on, sitä paremmin massa suodattuu ja sitä puhtaampia suodokset yleensä ovat. Mallin parametrit viritettiin regressioanalyysillä ja valmistajan palautetta apuna käyttäen. Käyttäjä voi valita haluaako hän käyttää ulkoista vai alkuperäistä mallia. Alkuperäinen malli täytyy ensin alustaa antamalla sille nominaaliset toimintapisteet virtaamille ja pitoisuuksille tietyllä pyörimisnopeudella. Ulkoisen mallin yhtälöitä voi käyttää alkuperäisen mallin alustamiseen, jos alkuperäinen malli toimii ulkoista paremmin. Ulkoista mallia voi käyttää myös ilman simulointiohjelmaa Galleria-palvelimelta käsin. Käyttäjälle avautuu näin mahdollisuus tarkastella kiekkosuodattimien parametreja ja nähdä suotautumistulokset oman työasemansa ääreltä mistä tahansa, kunhan Internetyhteys on olemassa. Työn tuloksena kiekkosuodattimien laitetiedon saatavuus käyttäjille parani ja alkuperäisen simulointimallin rajoituksia ja puutteita vähennettiin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin puuhakkeen esihydrolyysi- ja hakkuujätteen hydrolyysiprosessien integroimista sellutehtaaseen bioetanolin tuottamiseksi. Tällaisesta ns. biojalostamosta luotiin WinGEMS-simulointiohjelmalla simulointimalli, jonka avulla tutkittiin bioetanoliprosessin vaikutusta sellutehtaan massa- ja energiataseisiin sekä alustavaa biojalostamon kannattavuutta. Simuloinnissa tarkasteltiin kolmea eri tapausta, joissa mäntysellun tuotannon ajateltiin olevan 1000 tonnia päivässä ja hakkuujätettä käytettävän 10 % tarvittavan kuitupuun määrästä: 1) Puuhakkeen esihydrolyysi ja hakkuujätteen hydrolyysi etanolin tuottamiseksi 2) Puuhakkeen esihydrolyysi, hakkuujäte kuorikattilaan poltettavaksi 3) Ei esihydrolyysiä, hakkuujäte kuorikattilaan poltettavaksi Verrattuna tapaukseen 3, puun kulutus kasvaa 16 % esihydrolysoitaessa puuhake ennen keittoa tapauksissa 1 ja 2. Kasvaneella puun kulutuksella tuotetaan tapauksessa 1 149 tonnia etanolia ja 240 MWh enemmän ylimääräsähköä päivässä. Tapauksessa 2 tuotetaan 68 tonnia etanolia ja 460 MWh enemmän ylimääräsähköä päivässä. Tämä tuottaisi vuotuista lisäkassavirtaa 18,8 miljoonaa euroa tapauksessa 1 ja 9,4 miljoonaa euroa tapauksessa 2. Hydrolyysin tuoteliuoksen, hydrolysaatin, haihduttaminen sekä hydrolyysiprosessien orgaanisten jäännöstuotteiden haihduttaminen ja polttaminen kasvattavat haihduttamon ja soodakattilan kuormitusta. Verrattuna tapaukseen 3, tapauksissa 1 ja 2 haihduttamon vaiheiden määrä on kasvatettava viidestä seitsemään ja tarvittavat lämmönsiirtopinta-alat lähes kaksinkertaistettava. Soodakattilan kuormitus kasvaa 39 % tapauksessa 1 ja 26 % tapauksessa 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, a high penetration level of Distributed Generations (DGs) has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the upcoming years. How to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. This master project is intended to develop a control architecture for studying purposes of distribution systems with large scale integration of solar power. As part of the EcoGrid EU Smart Grid project, it focuses on the system modelling and simulation of a Danish representative LV network located in Bornholm island. Regarding the control architecture, two types of reactive control techniques are implemented and compare. In addition, a network voltage control based on a tap changer transformer is tested. The optimized results after applying a genetic algorithm to five typical Danish domestic loads are lower power losses and voltage deviation using Q(U) control, specially with large consumptions. Finally, a communication and information exchange system is developed with the objective of regulating the reactive power and thereby, the network voltage remotely and real-time. Validation test of the simulated parameters are performed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a Petri Net approach is introduced for modelling and simulation of control strategies in Intelligent Building. In this context, it is claimed that integration with other building systems can be achieved in a more systematic way considering a mechatronic approach (i.e. multidisciplinary concepts applied to the development of systems). The case study is the Ambulatory Building of Medical School Hospital of University of São Paulo. Particularly, the developed methodology is applied to the elevator system and to the HVAC (Heating, Ventilation and Air Conditioning) system. It is shown that using this approach, the control systems could be integrated, improving performance.