882 resultados para Simulation and prediction
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
Resumo:
This work is a MATLAB/Simulink model of a controller for a three-phase, four-wire, grid-interactive inverter. The model provides capacity for simulating the performance of power electroinic hardware, as well as code generation for an embedded controller. The implemented hardware topology is a three-leg bridge with a neutral connection to the centre-tap of the DC bus. An LQR-based current controller and MAF-based phase detector are implemented. The model is configured for code generation for a Texas Instruments TMS320F28335 Digital Signal Processor (DSP).
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
This paper presents two simple simulation and modelling tools designed to aid in the safety assessment required for unmanned aircraft operations within unsegregated airspace. First, a fast pair-wise encounter generator is derived to simulate the See and Avoid environment. The utility of the encounter generator is demonstrated through the development of a hybrid database and a statistical performance evaluation of an autonomous See and Avoid decision and control strategy. Second, an unmanned aircraft mission generator is derived to help visualise the impact of multiple persistent unmanned operations on existing air traffic. The utility of the mission generator is demonstrated through an example analysis of a mixed airspace environment using real traffic data in Australia. These simulation and modelling approaches constitute a useful and extensible set of analysis tools, that can be leveraged to help explore some of the more fundamental and challenging problems facing civilian unmanned aircraft system integration.
Resumo:
The outcome of the successfully resuscitated patient is mainly determined by the extent of hypoxic-ischemic cerebral injury, and hypothermia has multiple mechanisms of action in mitigating such injury. The present study was undertaken from 1997 to 2001 in Helsinki as a part of the European multicenter study Hypothermia after cardiac arrest (HACA) to test the neuroprotective effect of therapeutic hypothermia in patients resuscitated from out-of-hospital ventricular fibrillation (VF) cardiac arrest (CA). The aim of this substudy was to examine the neurological and cardiological outcome of these patients, and especially to study and develop methods for prediction of outcome in the hypothermia-treated patients. A total of 275 patients were randomized to the HACA trial in Europe. In Helsinki, 70 patients were enrolled in the study according to the inclusion criteria. Those randomized to hypothermia were actively cooled externally to a core temperature 33 ± 1ºC for 24 hours with a cooling device. Serum markers of ischemic neuronal injury, NSE and S-100B, were sampled at 24, 36, and 48 hours after CA. Somatosensory and brain stem auditory evoked potentials (SEPs and BAEPs) were recorded 24 to 28 hours after CA; 24-hour ambulatory electrocardiography recordings were performed three times during the first two weeks and arrhythmias and heart rate variability (HRV) were analyzed from the tapes. The clinical outcome was assessed 3 and 6 months after CA. Neuropsychological examinations were performed on the conscious survivors 3 months after the CA. Quantitative electroencephalography (Q-EEG) and auditory P300 event-related potentials were studied at the same time-point. Therapeutic hypothermia of 33ºC for 24 hours led to an increased chance of good neurological outcome and survival after out-of-hospital VF CA. In the HACA study, 55% of hypothermia-treated patients and 39% of normothermia-treated patients reached a good neurological outcome (p=0.009) at 6 months after CA. Use of therapeutic hypothermia was not associated with any increase in clinically significant arrhythmias. The levels of serum NSE, but not the levels of S-100B, were lower in hypothermia- than in normothermia-treated patients. A decrease in NSE values between 24 and 48 hours was associated with good outcome at 6 months after CA. Decreasing levels of serum NSE but not of S-100B over time may indicate selective attenuation of delayed neuronal death by therapeutic hypothermia, and the time-course of serum NSE between 24 and 48 hours after CA may help in clinical decision-making. In SEP recordings bilaterally absent N20 responses predicted permanent coma with a specificity of 100% in both treatment arms. Recording of BAEPs provided no additional benefit in outcome prediction. Preserved 24- to 48-hour HRV may be a predictor of favorable outcome in CA patients treated with hypothermia. At 3 months after CA, no differences appeared in any cognitive functions between the two groups: 67% of patients in the hypothermia and 44% patients in the normothermia group were cognitively intact or had only very mild impairment. No significant differences emerged in any of the Q-EEG parameters between the two groups. The amplitude of P300 potential was significantly higher in the hypothermia-treated group. These results give further support to the use of therapeutic hypothermia in patients with sudden out-of-hospital CA.
Resumo:
Lateral collisions between heavy road vehicles and passenger trains at level crossings and the associated derailments are serious safety issues. This paper presents a detailed investigation of the dynamic responses and derailment mechanisms of trains under lateral impact using a multi-body dynamics simulation method. Formulation of a three-dimensional dynamic model of a passenger train running on a ballasted track subject to lateral impact caused by a road truck is presented. This model is shown to predict derailment due to wheel climb and car body overturning mechanisms through numerical examples. Sensitivities of the truck speed and mass, wheel/rail friction and the train suspension to the lateral stability and derailment of the train are reported. It is shown that improvements to the design of train suspensions, including secondary and inter-vehicle lateral dampers have higher potential to mitigate the severity of the collision-induced derailments.
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
Microwave sources used in present day applications are either multiplied source derived from basic quartz crystals, or frequency synthesizers. The frequency multiplication method increases FM noise power considerably, and has very low efficiency in addition to being very complex and expensive. The complexity and cost involved demands a simple, compact and tunable microwave source. A tunable dielectric resonator oscillator(DRO) is an ideal choice for such applications. In this paper, the simulation, design and realization of a tunable DRO with a center frequency of 6250 MHz is presented. Simulation has been carried out on HP-Ees of CAD software. Mechanical and electronic tuning features are provided. The DRO operates over a frequency range of 6235 MHz to 6375 MHz. The output power is +5.33 dBm at centre frequency. The performance of the DRO is as per design with respect to phase noise, harmonic levels and tunability. and hence, can conveniently be used for the intended applications.
Resumo:
Yhteenveto: Vesistömalleihin perustuva vesistöjen seuranta- ja ennustejärjestelmä vesi- ja ympäristöhallinnossa
Resumo:
One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.