999 resultados para Silicon crystals
Resumo:
The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.
Resumo:
By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.
Resumo:
The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.
Resumo:
Three-dimensional photonic crystals based on macroporous silicon are fabricated by photoelectrochemical etching and subsequent focused-ion-beam drilling. Reflection measurements show a high reflection in the range of the stopgap and indicate the spectral position of the complete photonic band gap. The onset of diffraction which might influence the measurement is discussed.
Resumo:
We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is produced by electron-beam lithography (EBL) and electroplating. Periodic pillars as high as 200nm to 250nm are produced on the mould with the diameters ranging from 180nm to 400nm. The mould is employed for nanoimprinting on the poly-methyl-methacrylate (PMMA) layer spin-coated on the silicon substrate. Periodic air holes are formed in PMMA above its glass-transition temperature and the patterns on the mould are well transferred. This nanometer-size structure provided by NIL is subjective to further pattern transfer.
Resumo:
The spectral decomposition analysis was applied to the optical absorption spectra of green and colorless beryl crystals from the Brazilian Eastern Pegmatitic province in the natural state, Submitted to heat treatment and irradiated with UV light The attributions of the lines were made taking into account highly accurate quantum mechanical calculations The deconvolution of the green beryl spectra revealed four lines, two of them around 12,000 cm(-1) (1 5eV) and two of them around 34,000 cm(-1) (4.2 eV) attributed to Fe(2+) and Fe(3+), respectively The deconvolution of the colorless beryl spectra without any treatment, after heating and for the same heat treatment followed by UV light irradiation revealed five lines The analysis of ratio relations showed that the lines at 36,400 cm(-1) (4.5 eV) and 41,400 cm(-1) (5 1 eV) belongs to a single defect attributed to a silicon dangling bond defect (=Si). Discussions and comparison with reported defects in quartz have supported the allocation of the lines at 61,000 cm(-1) (7.6 eV) and 43,800 cm(-1) (5 4 eV) to diamagnetic oxygen vacancy defect ( Si-Si ) and unrelaxed ( Si Si ) defect, respectively Finally, the line at 39.100 cm(-1) (4.8 eV), quite polarized along the c-axis, was attributed to a (Fe(2+) OH(-)) defect in the structural channels (C) 2009 Elsevier B V All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Computer simulation of ordering and dynamics in liquid crystals in the bulk and close to the surface
Resumo:
The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of MaierSaupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystalsmectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CBvacuum, finding a homeotropic orientation of the nematic at this interface.
Resumo:
The present thesis is focused on the study of innovative Si-based materials for third generation photovoltaics. In particular, silicon oxi-nitride (SiOxNy) thin films and multilayer of Silicon Rich Carbide (SRC)/Si have been characterized in view of their application in photovoltaics. SiOxNy is a promising material for applications in thin-film solar cells as well as for wafer based silicon solar cells, like silicon heterojunction solar cells. However, many issues relevant to the material properties have not been studied yet, such as the role of the deposition condition and precursor gas concentrations on the optical and electronic properties of the films, the composition and structure of the nanocrystals. The results presented in the thesis aim to clarify the effects of annealing and oxygen incorporation within nc-SiOxNy films on its properties in view of the photovoltaic applications. Silicon nano-crystals (Si NCs) embedded in a dielectric matrix were proposed as absorbers in all-Si multi-junction solar cells due to the quantum confinement capability of Si NCs, that allows a better match to the solar spectrum thanks to the size induced tunability of the band gap. Despite the efficient solar radiation absorption capability of this structure, its charge collection and transport properties has still to be fully demonstrated. The results presented in the thesis aim to the understanding of the transport mechanisms at macroscopic and microscopic scale. Experimental results on SiOxNy thin films and SRC/Si multilayers have been obtained at macroscopical and microscopical level using different characterizations techniques, such as Atomic Force Microscopy, Reflection and Transmission measurements, High Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The deep knowledge and improved understanding of the basic physical properties of these quite complex, multi-phase and multi-component systems, made by nanocrystals and amorphous phases, will contribute to improve the efficiency of Si based solar cells.