924 resultados para Severe Head-injury
Resumo:
El traumatismo craneoencefálico, es la epidemia silenciosa de nuestra época, que genera gastos en salud, en países como Estados Unidos, cercanos a los 60 billones de dólares anuales, y cerca de 400 billones en rehabilitación de los discapacitados. El pilar del manejo médico del trauma craneoencefálico moderado o severo, es la osmoterapia, principalmente con sustancias como el manitol y las soluciones hipertónicas. Se realizó la revisión de 14 bases de datos, encontrando 4657754 artículos, quedando al final 40 artículos después de un análisis exhaustivo, que se relacionaban con el manejo de la hipertensión endocraneana y terapia osmótica. Resultados: Se compararon diferentes estudios, encontrando gran variabilidad estos, sin homogenización en los análisis estadísticos, y la poca rigurosidad no permitieron, la recolección de datos y la comparación entre los diferentes estudios, no permitió realizar el meta-análisis y por esto se decidió la realización de una revisión sistemática de la literatura. Se evidenció principalmente tres cosas: la primera es la poca rigurosidad con la que se realizan los estudios clínicos; la segunda, es que aún falta mucha más investigación principalmente, la presencia de estudios clínicos aleatorizados multicéntricos, que logren dar una sólida evidencia y que genere validez científica que se requiere, a pesar de la evidencia clara en la práctica clínica; la tercera es la seguridad para su uso, con poca presencia de complicaciones para las soluciones salinas hipertónicas.
Resumo:
El Trauma Craneoencefálico (TCE) infantil constituye un motivo frecuente de consulta en Urgencias y supone la primera causa de muerte en niños, llegando a ser hasta del 50% en trauma severo. En Colombia se conocen cifras de TCE por algunos estudios descriptivos, pero no existen reportes en Bogotá ni específicamente en TCE severo. Objetivo: Caracterizar el trauma craneoencefálico severo pediátrico en la Unidad de Cuidado intensivo del Hospital de la Misericordia entre los años 2010 y 2013. Materiales y métodos: Un estudio descriptivo retrospectivo fue realizado en el Hospital de la Misericordia mediante revisión de las historias clínicas de los pacientes que ingresaron a la Unidad de Cuidado Intensivo pediátrico con diagnóstico de trauma craneoencefálico severo entre el año 2010 al 2013. Resultados: Se incluyeron 63 pacientes (71,4% hombres) con una edad mediana de 4 años (RIQ 2-8). La mayoría de los traumas fueron originados por caída o accidente de tránsito (79,4%). La principal lesión fue fractura de cráneo (79%). Casi la mitad de los pacientes sufrieron algún tipo de secuela neurológica al egreso (47,1%). La mayoría de los pacientes que murieron (19%) sufrieron choque hipovolémico (83,3%) y presentaron trauma asociado (66,7%). Conclusión: Las características y epidemiología del trauma craneoencefálico en nuestra población muestran claras similitudes con lo reportados en otras series de la literatura mundial y de Colombia, excepto por la mortalidad, que se esperaba más alta al estudiar solo pacientes con TCE severo.
Resumo:
Nos últimos anos tem havido referências à limitação da resposta metabólica nas duas primeiras semanas após trauma cranioencefálico (TCE). Foi feita proposta de estudo a partir de experimento clínico em pacientes com trauma encefálico grave, que foram avaliados por volta de 7 dias após a lesão (M1). A segunda avaliação ocorreu 4 dias após (M2), e a terceira 3 a 4 dias após (M3). em um período de 2 anos, foram selecionados 28 pacientes do sexo masculino, com trauma encefálico grave, escala de gravidade de Glasgow entre 4 e 6. Dentre os 28 pacientes, 6 completaram o estudo proposto. Os pacientes foram acompanhados clinicamente durante toda a fase do experimento. em cada um dos momentos de análise, foram feitas análises da excreção nitrogenada e proteínas de fase aguda. da mesma forma foram feitas determinações da glicemia plasmática, N-amínico e triglicerídeos. Os resultados do estudo demonstraram não haver modificações no balanço nitrogenado, normalização da proteína-C-reativa e redução relativa da glicemia ao final do experimento. Os autores tecem considerações sobre os possíveis mecanismos envolvidos na modulação da resposta metabólica e concluem que o hipermetabolismo, a basear-se na análise da glicemia e das proteínas de fase aguda, não persiste além do 13° dia do período de recuperação pós-trauma. São feitas sugestões de estudos futuros que possam elucidar os mecanismos envolvidos na normalização do hipercatabolismo e hipermetabolismo observados nas duas primeiras semanas após TCE.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
The ATLS program by the American college of surgeons is probably the most important globally active training organization dedicated to improve trauma management. Detection of acute haemorrhagic shock belongs to the key issues in clinical practice and thus also in medical teaching. (In this issue of the journal William Schulz and Ian McConachrie critically review the ATLS shock classification Table 1), which has been criticized after several attempts of validation have failed [1]. The main problem is that distinct ranges of heart rate are related to ranges of uncompensated blood loss and that the heart rate decrease observed in severe haemorrhagic shock is ignored [2]. Table 1. Estimated blood loos based on patient's initial presentation (ATLS Students Course Manual, 9th Edition, American College of Surgeons 2012). Class I Class II Class III Class IV Blood loss ml Up to 750 750–1500 1500–2000 >2000 Blood loss (% blood volume) Up to 15% 15–30% 30–40% >40% Pulse rate (BPM) <100 100–120 120–140 >140 Systolic blood pressure Normal Normal Decreased Decreased Pulse pressure Normal or ↑ Decreased Decreased Decreased Respiratory rate 14–20 20–30 30–40 >35 Urine output (ml/h) >30 20–30 5–15 negligible CNS/mental status Slightly anxious Mildly anxious Anxious, confused Confused, lethargic Initial fluid replacement Crystalloid Crystalloid Crystalloid and blood Crystalloid and blood Table options In a retrospective evaluation of the Trauma Audit and Research Network (TARN) database blood loss was estimated according to the injuries in nearly 165,000 adult trauma patients and each patient was allocated to one of the four ATLS shock classes [3]. Although heart rate increased and systolic blood pressure decreased from class I to class IV, respiratory rate and GCS were similar. The median heart rate in class IV patients was substantially lower than the value of 140 min−1 postulated by ATLS. Moreover deterioration of the different parameters does not necessarily go parallel as suggested in the ATLS shock classification [4] and [5]. In all these studies injury severity score (ISS) and mortality increased with in increasing shock class [3] and with increasing heart rate and decreasing blood pressure [4] and [5]. This supports the general concept that the higher heart rate and the lower blood pressure, the sicker is the patient. A prospective study attempted to validate a shock classification derived from the ATLS shock classes [6]. The authors used a combination of heart rate, blood pressure, clinically estimated blood loss and response to fluid resuscitation to classify trauma patients (Table 2) [6]. In their initial assessment of 715 predominantly blunt trauma patients 78% were classified as normal (Class 0), 14% as Class I, 6% as Class II and only 1% as Class III and Class IV respectively. This corresponds to the results from the previous retrospective studies [4] and [5]. The main endpoint used in the prospective study was therefore presence or absence of significant haemorrhage, defined as chest tube drainage >500 ml, evidence of >500 ml of blood loss in peritoneum, retroperitoneum or pelvic cavity on CT scan or requirement of any blood transfusion >2000 ml of crystalloid. Because of the low prevalence of class II or higher grades statistical evaluation was limited to a comparison between Class 0 and Class I–IV combined. As in the retrospective studies, Lawton did not find a statistical difference of heart rate and blood pressure among the five groups either, although there was a tendency to a higher heart rate in Class II patients. Apparently classification during primary survey did not rely on vital signs but considered the rather soft criterion of “clinical estimation of blood loss” and requirement of fluid substitution. This suggests that allocation of an individual patient to a shock classification was probably more an intuitive decision than an objective calculation the shock classification. Nevertheless it was a significant predictor of ISS [6]. Table 2. Shock grade categories in prospective validation study (Lawton, 2014) [6]. Normal No haemorrhage Class I Mild Class II Moderate Class III Severe Class IV Moribund Vitals Normal Normal HR > 100 with SBP >90 mmHg SBP < 90 mmHg SBP < 90 mmHg or imminent arrest Response to fluid bolus (1000 ml) NA Yes, no further fluid required Yes, no further fluid required Requires repeated fluid boluses Declining SBP despite fluid boluses Estimated blood loss (ml) None Up to 750 750–1500 1500–2000 >2000 Table options What does this mean for clinical practice and medical teaching? All these studies illustrate the difficulty to validate a useful and accepted physiologic general concept of the response of the organism to fluid loss: Decrease of cardiac output, increase of heart rate, decrease of pulse pressure occurring first and hypotension and bradycardia occurring only later. Increasing heart rate, increasing diastolic blood pressure or decreasing systolic blood pressure should make any clinician consider hypovolaemia first, because it is treatable and deterioration of the patient is preventable. This is true for the patient on the ward, the sedated patient in the intensive care unit or the anesthetized patients in the OR. We will therefore continue to teach this typical pattern but will continue to mention the exceptions and pitfalls on a second stage. The shock classification of ATLS is primarily used to illustrate the typical pattern of acute haemorrhagic shock (tachycardia and hypotension) as opposed to the Cushing reflex (bradycardia and hypertension) in severe head injury and intracranial hypertension or to the neurogenic shock in acute tetraplegia or high paraplegia (relative bradycardia and hypotension). Schulz and McConachrie nicely summarize the various confounders and exceptions from the general pattern and explain why in clinical reality patients often do not present with the “typical” pictures of our textbooks [1]. ATLS refers to the pitfalls in the signs of acute haemorrhage as well: Advanced age, athletes, pregnancy, medications and pace makers and explicitly state that individual subjects may not follow the general pattern. Obviously the ATLS shock classification which is the basis for a number of questions in the written test of the ATLS students course and which has been used for decades probably needs modification and cannot be literally applied in clinical practice. The European Trauma Course, another important Trauma training program uses the same parameters to estimate blood loss together with clinical exam and laboratory findings (e.g. base deficit and lactate) but does not use a shock classification related to absolute values. In conclusion the typical physiologic response to haemorrhage as illustrated by the ATLS shock classes remains an important issue in clinical practice and in teaching. The estimation of the severity haemorrhage in the initial assessment trauma patients is (and was never) solely based on vital signs only but includes the pattern of injuries, the requirement of fluid substitution and potential confounders. Vital signs are not obsolete especially in the course of treatment but must be interpreted in view of the clinical context. Conflict of interest None declared. Member of Swiss national ATLS core faculty.
Resumo:
This prospective study evaluated serum procalcitonin (PCT) and C-reactive protein (CRP) as markers for systemic inflammatory response syndrome (SIRS)/sepsis and mortality in patients with traumatic brain injury and subarachnoid haemorrhage. Sixty-two patients were followed for 7 days. Serum PCT and CRP were measured on days 0, 1, 4, 5, 6 and 7. Seventy-seven per cent of patients with traumatic brain injury and 83% with subarachnoid haemorrhage developed SIRS or sepsis (P= 0.75). Baseline PCT and CRP were elevated in 35% and 55% ofpatients respectively (P=0.03). There was a statistically non-significant step-wise increase in serum PCT levels from no SIRS (0.4 +/- 0.6 ng/ml) to SIRS (3.05 +/- 9.3 ng/ml) to sepsis (5.5 +/- 12.5 ng/ml). A similar trend was noted in baseline PCT in patients with mild (0.06 +/- 0.9 ng/ml), moderate (0.8 +/- 0.7 ng/ml) and severe head injury (1.2 +/- 1.9 ng/ml). Such a gradation was not observed with serum CRP There was a non-significant trend towards baseline PCT being a better marker of hospital mortality compared with baseline CRP (ROC-AUC 0.56 vs 0.31 respectively). This is the first prospective study to document the high incidence of SIRS in neurosurgical patients. In our study, serum PCT appeared to correlate with severity of traumatic brain injury and mortality. However, it could not reliably distinguish between SIRS and sepsis in this cohort. This is in pan because baseline PCT elevation seemed to correlate with severity of injury. Only a small proportion ofpatients developed sepsis, thus necessitating a larger sample size to demonstrate the diagnostic usefulness of serum PCT as a marker of sepsis. Further clinical trials with larger sample sizes are required to confirm any potential role of PCT as a sepsis and outcome indicator in patients with head injuries or subarachnoid haemorrhage.
Resumo:
OBJECT: Brain tissue acidosis is known to mediate neuronal death. Therefore the authors measured the main parameters of cerebral acid-base homeostasis, as well as their interrelations, shortly after severe traumatic brain injury (TBI) in humans. METHODS: Brain tissue pH, PCO2, PO2, and/or lactate were measured in 151 patients with severe head injuries, by using a Neurotrend sensor and/or a microdialysis probe. Monitoring was started as soon as possible after the injury and continued for up to 4 days. During the 1st day following the trauma, the brain tissue pH was significantly lower, compared with later time points, in patients who died or remained in a persistent vegetative state. Six hours after the injury, brain tissue PCO2 was significantly higher in patients with a poor outcome compared with patients with a good outcome. Furthermore, significant elevations in cerebral concentrations of lactate were found during the 1st day after the injury, compared with later time points. These increases in lactate were typically more pronounced in patients with a poor outcome. Similar biochemical changes were observed during later hypoxic events. CONCLUSIONS: Severe human TBI profoundly disturbs cerebral acid-base homeostasis. The observed pH changes persist for the first 24 hours after the trauma. Brain tissue acidosis is associated with increased tissue PCO2 and lactate concentration; these pathobiochemical changes are more severe in patients who remain in a persistent vegetative state or die. Furthermore, increased brain tissue PCO2 (> 60 mm Hg) appears to be a useful clinical indicator of critical cerebral ischemia, especially when accompanied by increased lactate concentrations.
Resumo:
The lower limb of military vehicle occupants has been the most injured body part due to undervehicle explosions in recent conflicts. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested 4 different occupant postures (seated, brace, standing, standing with knee locked in hyper‐extension) in a simulated under‐vehicle explosion (solid blast) using our traumatic injury simulator in the laboratory; we hypothesised that occupant posture would affect injury severity. No skeletal injury was observed in the specimens in seated and braced postures. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. These results demonstrate that a vehicle occupant whose posture at the time of the attack incorporates knee flexion is more likely to be protected against severe skeletal injury to the lower leg.
Resumo:
Hamstring strain injuries (HSIs) are the most prevalent injury in a number of sports, and while anterior cruciate ligament (ACL) injuries are less common, they are far more severe and have long-term implications, such as an increased risk of developing osteoarthritis later in life. Given the high incidence and severity of these injuries, they are key targets of injury preventive programs in elite sport. Evidence has shown that a previous severe knee injury (including ACL injury) increases the risk of HSI; however, whether the functional deficits that occur after HSI result in an increased risk of ACL injury has yet to be considered. In this clinical commentary, we present evidence that suggests that the link between previous HSI and increased risk of ACL injury requires further investigation by drawing parallels between deficits in hamstring function after HSI and in women athletes, who are more prone to ACL injury than men athletes. Comparisons between the neuromuscular function of the male and female hamstring has shown that women display lower hamstring-to-quadriceps strength ratios during isokinetic knee flexion and extension, increased activation of the quadriceps compared with the hamstrings during a stop-jump landing task, a greater time required to reach maximal isokinetic hamstring torque, and lower integrated myoelectrical hamstring activity during a sidestep cutting maneuver. Somewhat similarly, in athletes with a history of HSI, the previously injured limb, compared with the uninjured limb, displays lower eccentric knee flexor strength, a lower hamstrings-to-quadriceps strength ratio, lower voluntary myoelectrical activity during maximal knee flexor eccentric contraction, a lower knee flexor eccentric rate of torque development, and lower voluntary myoelectrical activity during the initial portion of eccentric contraction. Given that the medial and lateral hamstrings have different actions at the knee joint in the coronal plane, which hamstring head is previously injured might also be expected to influence the likelihood of future ACL. Whether the deficits in function after HSI, as seen in laboratory-based studies, translate to deficits in hamstring function during typical injurious tasks for ACL injury has yet to be determined but should be a consideration for future work.
Resumo:
Introduction Canadian C spine rule and NEXUS criteria have identified risk factors for cervical spine injury in adults but not for children. PECARN has developed an 8 variable model for cervical spine injury in children. We sought to identify the mechanism, prevalence of PECARN risk factors, injury patterns, and management of severe Paediatric cervical spine injuries presenting to the major children’s hospitals in Brisbane, Australia. Methods This a retrospective study of the children with cervical spine injuries who presented directly or were referred to the major children’s hospitals in Brisbane over 5 years. Results There were 38 patients with 18 male and 20 female.The mean age was 8.6 years. They were divided into two groups according to their age, (Group 1 < =8 years had 18 (47%) patients, while group 2 (9-15 years) had 20 (53%) patients. Motor vehicle related injuries were the most common (61%) in Group 1 while it was sporting injuries (50%) in group 2. All patients in group 1 had upper cervical injury (C0-C2) while subaxial injuries were most common in group 2 (66.6%). 82% of the patients had 2 or more PECARN risk factors. 18 children (47%) had normal neurological assessment at presentation, 6 (16%) had radicular symptoms, 11 (29%) could not be assessed as they had already been intubated due to the severity of the injury, 3 (8%) had incomplete cord injury. 29 (69%) patients had normal neurological assessment at final follow up and 2 children died from their injuries. Conclusion Our study confirms that younger children sustain upper cervical injuries most commonly secondary to motor vehicle accidents, while the older sustain subaxial injuries from sporting activities. The significant prevalence of the PECARN risk factors among this cohort of patients have led to them being incorporated into a protocol at these hospitals used to assess patients with suspected cervical spinal injury.
Resumo:
INTRODUCTION Radiological evaluation of the paediatric cervical spine can be a challenge due to the normal anatomic variants and injuries that are unique to children. We aimed to identify the usefulness of plain X-rays in comparison with CT and MRI in diagnosing Paediatric cervical spinal injuries. METHODS Retrospective review of imaging studies of children diagnosed with paediatric cervical spine injuries who had presented to two tertiary hospitals in Queensland. RESULTS There were 38 patients with 18 male and 20 female .The mean age was 8.6 years. Plain Cervical Spine X-rays (3views, AP lateral and open mouth views) were done in 34 patients. The remaining 8 children had a suspected head injury and hence had CT scans of their neck done at the time of CT head scan. Of these images taken, X-rays were diagnostic in 28 (82%) patients. CONCLUSION X- Rays still have a role to play in the diagnosis of pediatric cervical spinal injuries and should be considered as the first line in fully conscious patients and their usefulness should not be overlooked in light of the newer imaging modalities.
Resumo:
We examined the role of altered emotional functioning across the spectrum of injury severity (mild head injury [MHI], moderate/severe traumatic brain injury [TBI]), its implications for social behaviours, and the effect of modifying arousal and its relation to cognitive performance. In the first study (N = 230), students with self-reported MHI endorsed engaging in socially unacceptable and erratic behaviours significantly more often than did those with no MHI. We did not find significant differences between the groups in the measure of emotional intelligence (EI); however, for students who reported a MHI, scores on the EI measure significantly predicted reports of socially unacceptable behaviours such that lower scores predicted poorer social functioning, accounting for approximately 20% of the variance. Also, the experience of postconcussive symptoms was found to be significantly greater for students with MHI relative to their peers. In the second study (N = 85), we further examined emotional underarousal in terms of physiological (i.e., electrodermal activation [EDA]) and self-reported responsivity to emotionally-evocative picture stimuli. Although the valence ratings of the stimuli did not differ between students with and without MHI as we had expected, we found evidence of reduced and/or indiscriminate emotional responding to the stimuli for those with MHI which mimics that observed in other studies for persons with moderate/severe TBI. We also found that emotional underarousal followed a gradient of injury severity despite reporting a pattern of experiencing more life stressors. In the third study (N = 81), we replicated our findings of emotional underarousal for those with head trauma and also uniquely explored neuroendocrine aspects (salivary cortisol; cortisol awakening response [CAR]) and autonomic indices (EDA) of emotional dysregulation in terms of stress responsivity across the spectrum of injury severity (MHI [n = 32], moderate/severe TBI [n = 9], and age and education matched controls [n = 40]). Although the manipulation was effective in modifying arousal state in terms of autonomic and self-reported indices, we did not support our hypothesis that increased arousal would be related to improved performance on cognitive measures for those with prior injury. To our knowledge, this is the only study to examine the CAR with this population. Repeated measure analysis revealed that, upon awakening, students with no reported head trauma illustrated the typical CAR increase 45 minutes after waking, whereas, students who had a history of either mild head trauma or moderate/severe TBI demonstrated a blunted CAR. Thus, across the three studies we have provided evidence of emotional underarousal, its potential implications for social interactions, and also have identified potentially useful indices of dysregulated stress responsivity regardless of injury severity.
Resumo:
PURPOSE: The characteristic findings in accidental head injury consist of linear skull fracture, epidural haematoma, localized subdural haematoma, or cortical contusion because of a linear or translational impact force. Retinal haemorrhages have been found, although uncommon, in accidental head trauma. METHODS: We performed a retrospective study of 24 consecutive cases of children with severe head injuries caused by falls. Inclusion criteria were skull fractures and/or intracranial haemorrhages documented by computerized tomography. All patients underwent a careful ophthalmic examination including dilated indirect fundoscopy within the first 48 h following admission. RESULTS: No retinal haemorrhages could be found in patients whose accidents were plausible and physical and imaging findings were compatible with reported histories. Excessive bilateral retinal haemorrhages were found in only three children with the typical signs of shaken baby syndrome. In eight children, trauma had led to orbital roof fractures. CONCLUSIONS: Retinal haemorrhages were not found in any of the patients with accidental trauma despite the severity of their head injuries. Hence, we add more evidence that there are strong differences between the ocular involvement in accidental translational trauma and those in victims of non-accidental trauma. Fall-related injuries carry a very low risk of retinal haemorrhages.