844 resultados para Service Contract, Rail Failure, Maintenance, Cost Model
Resumo:
Abstract: Purpose – The aim of this research is to determine the optimal upgrade and preventive maintenance actions that minimize the total expected cost (maintenance costs+penalty costs). Design/methodology/approach – The problem is a four-parameter optimization with two parameters being k-dimensional. The optimal solution is obtained by using a four-stage approach where at each stage a one-parameter optimization is solved. Findings – Upgrading action is an extra option before the lease of used equipment, in addition to preventive maintenance action. Upgrading action makes equipment younger and preventive maintenance action lowers the ROCOF. Practical implications – There is a growing trend towards leasing equipment rather than owning it. The lease contract contains penalties if the equipment fails often and repairs are done within reasonable time period. This implies that the lessor needs to look at optimal preventive maintenance strategies in the case of new equipment lease, and upgrade actions plus preventive maintenance in the case of used equipment lease. The paper deals with this topic and is of great significant to business involved with leasing equipment. Originality/value – Nowadays many organizations are interested in leasing equipment and outsourcing maintenance. The model in this paper addresses the preventive maintenance problem for leased equipment. It provides an approach to dealing with this problem.
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
n decentralised rural electrification through solar home systems, private companies and promoting institutions are faced with the problem of deploying maintenance structures to operate and guarantee the service of the solar systems for long periods (ten years or more). The problems linked to decentralisation, such as the dispersion of dwellings, difficult access and maintenance needs, makes it an arduous task. This paper proposes an innovative design tool created ad hoc for photovoltaic rural electrification based on a real photovoltaic rural electrification program in Morocco as a special case study. The tool is developed from a mathematical model comprising a set of decision variables (location, transport, etc.) that must meet certain constraints and whose optimisation criterion is the minimum cost of the operation and maintenance activity assuming an established quality of service. The main output of the model is the overall cost of the maintenance structure. The best location for the local maintenance headquarters and warehouses in a given region is established, as are the number of maintenance technicians and vehicles required.
Resumo:
Executive Summary The objective of this report was to use the Sydney Opera House as a case study of the application of Building Information Modelling (BIM). The Sydney opera House is a complex, large building with very irregular building configuration, that makes it a challenging test. A number of key concerns are evident at SOH: • the building structure is complex, and building service systems - already the major cost of ongoing maintenance - are undergoing technology change, with new computer based services becoming increasingly important. • the current “documentation” of the facility is comprised of several independent systems, some overlapping and is inadequate to service current and future services required • the building has reached a milestone age in terms of the condition and maintainability of key public areas and service systems, functionality of spaces and longer term strategic management. • many business functions such as space or event management require up-to-date information of the facility that are currently inadequately delivered, expensive and time consuming to update and deliver to customers. • major building upgrades are being planned that will put considerable strain on existing Facilities Portfolio services, and their capacity to manage them effectively While some of these concerns are unique to the House, many will be common to larger commercial and institutional portfolios. The work described here supported a complementary task which sought to identify if a building information model – an integrated building database – could be created, that would support asset & facility management functions (see Sydney Opera House – FM Exemplar Project, Report Number: 2005-001-C-4 Building Information Modelling for FM at Sydney Opera House), a business strategy that has been well demonstrated. The development of the BIMSS - Open Specification for BIM has been surprisingly straightforward. The lack of technical difficulties in converting the House’s existing conventions and standards to the new model based environment can be related to three key factors: • SOH Facilities Portfolio – the internal group responsible for asset and facility management - have already well established building and documentation policies in place. The setting and adherence to well thought out operational standards has been based on the need to create an environment that is understood by all users and that addresses the major business needs of the House. • The second factor is the nature of the IFC Model Specification used to define the BIM protocol. The IFC standard is based on building practice and nomenclature, widely used in the construction industries across the globe. For example the nomenclature of building parts – eg ifcWall, corresponds to our normal terminology, but extends the traditional drawing environment currently used for design and documentation. This demonstrates that the international IFC model accurately represents local practice for building data representation and management. • a BIM environment sets up opportunities for innovative processes that can exploit the rich data in the model and improve services and functions for the House: for example several high-level processes have been identified that could benefit from standardized Building Information Models such as maintenance processes using engineering data, business processes using scheduling, venue access, security data and benchmarking processes using building performance data. The new technology matches business needs for current and new services. The adoption of IFC compliant applications opens the way forward for shared building model collaboration and new processes, a significant new focus of the BIM standards. In summary, SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. These BIM standards and their application to the Opera House are intended as a template for other organisations to adopt for the own procurement and facility management activities. Appendices provide an overview of the IFC Integrated Object Model and an understanding IFC Model Data.
Resumo:
“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.
Resumo:
A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.
Resumo:
This paper presents the results of a structural equation model (SEM) for describing and quantifying the fundamental factors that affect contract disputes between owners and contractors in the construction industry. Through this example, the potential impact of SEM analysis in construction engineering and management research is illustrated. The purpose of the specific model developed in this research is to explain how and why contract related construction problems occur. This study builds upon earlier work, which developed a disputes potential index, and the likelihood of construction disputes was modeled using logistic regression. In this earlier study, questionnaires were completed on 159 construction projects, which measured both qualitative and quantitative aspects of contract disputes, management ability, financial planning, risk allocation, and project scope definition for both owners and contractors. The SEM approach offers several advantages over the previously employed logistic regression methodology. The final set of structural equations provides insight into the interaction of the variables that was not apparent in the original logistic regression modeling methodology.
Resumo:
With the growing significance of services in most developed economies, there is an increased interest in the role of service innovation in service firm competitive strategy. Despite growing literature on service innovation, it remains fragmented reflecting the need for a model that captures key antecedents driving the service innovation-based competitive advantage process. Building on extant literature and using thirteen in-depth interviews with CEOs of project-oriented service firms, this paper presents a model of innovation-based competitive advantage. The emergent model suggests that entrepreneurial service firms pursuing innovation carefully select and use dynamic capabilities that enable them to achieve greater innovation and sustained competitive advantage. Our findings indicate that firms purposefully use create, extend and modify processes to build and nurture key dynamic capabilities. The paper presents a set of theoretical propositions to guide future research. Implications for theory and practice are discussed. Finally, directions for future research are outlined.
Resumo:
Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.
Resumo:
In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.
Resumo:
A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.
Resumo:
We study the dynamics of a game-theoretic network formation model that yields large-scale small-world networks. So far, mostly stochastic frameworks have been utilized to explain the emergence of these networks. On the other hand, it is natural to seek for game-theoretic network formation models in which links are formed due to strategic behaviors of individuals, rather than based on probabilities. Inspired by Even-Dar and Kearns (2007), we consider a more realistic model in which the cost of establishing each link is dynamically determined during the course of the game. Moreover, players are allowed to put transfer payments on the formation of links. Also, they must pay a maintenance cost to sustain their direct links during the game. We show that there is a small diameter of at most 4 in the general set of equilibrium networks in our model. Unlike earlier model, not only the existence of equilibrium networks is guaranteed in our model, but also these networks coincide with the outcomes of pairwise Nash equilibrium in network formation. Furthermore, we provide a network formation simulation that generates small-world networks. We also analyze the impact of locating players in a hierarchical structure by constructing a strategic model, where a complete b-ary tree is the seed network.