993 resultados para Semilinear parabolic problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equation ∂tu = u∂xx2u − (c − 1)(∂xu)2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water-absorbing fissurized porous rock; therefore, we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, free surface problems of Stefan-type for the parabolic heat equation are investigated using the method of fundamental solutions. The additional measurement necessary to determine the free surface could be a boundary temperature, a heat flux or an energy measurement. Both one- and two-phase flows are investigated. Numerical results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniqueness of a solution is investigated for some inverse source problems arising in linear parabolic equations. We prove new uniqueness results formulated in Theorems 3.1 and 3.2. We also show optimality of the conditions under which uniqueness holds by explicitly constructing counterexamples, that is by constructing more than one solution in the case when the conditions for uniqueness are violated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a parametric semilinear Dirichlet problem driven by the Laplacian plus an indefinite unbounded potential and with a reaction of superdifissive type. Using variational and truncation techniques, we show that there exists a critical parameter value λ_{∗}>0 such that for all λ> λ_{∗} the problem has least two positive solutions, for λ= λ_{∗} the problem has at least one positive solutions, and no positive solutions exist when λ∈(0,λ_{∗}). Also, we show that for λ≥ λ_{∗} the problem has a smallest positive solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a periodic problem driven by the scalar $p-$Laplacian and with a jumping (asymmetric) reaction. We prove two multiplicity theorems. The first concerns the nonlinear problem ($1semilinear problem ($p=2$) and produces three solutions. The tools of our analysis are variational and Morse theoretic.