984 resultados para Schur multipliers, operator multipliers
Resumo:
Correct specification of the simple location quotients in regionalizing the national direct requirements table is essential to the accuracy of regional input-output multipliers. The purpose of this research is to examine the relative accuracy of these multipliers when earnings, employment, number of establishments, and payroll data specify the simple location quotients. For each specification type, I derive a column of total output multipliers and a column of total income multipliers. These multipliers are based on the 1987 benchmark input-output accounts of the U.S. economy and 1988-1992 state of Florida data. Error sign tests, and Standardized Mean Absolute Deviation (SMAD) statistics indicate that the output multiplier estimates overestimate the output multipliers published by the Department of Commerce-Bureau of Economic Analysis (BEA) for the state of Florida. In contrast, the income multiplier estimates underestimate the BEA's income multipliers. For a given multiplier type, the Spearman-rank correlation analysis shows that the multiplier estimates and the BEA multipliers have statistically different rank ordering of row elements. The above tests also find no significant different differences, both in size and ranking distributions, among the vectors of multiplier estimates.
Resumo:
A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.
Resumo:
A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.
Resumo:
We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
Nesta tese são estudados espaços de Besov de suavidade generalizada em espaços euclidianos, numa classe de fractais designados conjuntos-h e em estruturas abstractas designadas por espaços-h. Foram obtidas caracterizações e propriedades para estes espaços de funções. Em particular, no caso de espaços de Besov em espaços euclidianos, foram obtidas caracterizações por diferenças e por decomposições em átomos não suaves, foi provada uma propriedade de homogeneidade e foram estudados multiplicadores pontuais. Para espaços de Besov em conjuntos-h foi obtida uma caracterização por decomposições em átomos não suaves e foi construído um operador extensão. Com o recurso a cartas, os resultados obtidos para estes espaços de funções em fractais foram aplicados para definir e trabalhar com espaços de Besov de suavidade generalizada em estruturas abstractas. Nesta tese foi também estudado o laplaciano fractal, considerado a actuar em espaços de Besov de suavidade generalizada em domínios que contêm um conjunto-h fractal. Foram obtidos resultados no contexto de teoria espectral para este operador e foi estudado, à custa deste operador, um problema de Dirichlet fractal no contexto de conjuntos-h.
Resumo:
This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.
Resumo:
Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.
Resumo:
Wynne and Schaffer (2003) have highlighted both the strong growth of gambling activity in recent years, and the revenue streams this has generated for governments and communities. Gambling activities and the revenues derived from them have, unsurprisingly, therefore also been seen as a way in which to increase economic development in deprived areas (Jinkner-Lloyd, 1996). Consequently, according to Brown et al (2003), gambling is now a large taxation revenue earner for many western governments, at both federal and state levels, worldwide (for example UK, USA, Australia). In size and importance, the Australian gambling industry in particular has grown significantly over the last three decades, experiencing a fourfold increase in real gambling turnover. There are, however, also concerns expressed about gambling and Electronic Gaming in particular, as illustrated in economic, social and ethical terms in Oddo (1997). There are also spatial aspects to understanding these issues. Marshall’s (1998) study, for example, highlights that benefits from gambling are more likely to accrue at the macro as opposed to the local level, because of centralised tax gathering and spending of tax revenues, whilst localities may suffer from displacement of activities with higher multipliers than the institutions with EGMs that replace them. This also highlights a regional context of costs, where benefits accrue to the centre, but the costs accrue to the regions and localities, as simultaneously resources leave those communities through both the gambling activities themselves (in the form of revenue for the EGM owners), and the government (through taxes).
Resumo:
This paper presents the stability analysis for a distribution static compensator (DSTATCOM) that operates in current control mode based on bifurcation theory. Bifurcations delimit the operating zones of nonlinear circuits and, hence, the capability to compute these bifurcations is of important interest for practical design. A control design for the DSTATCOM is proposed. Along with this control, a suitable mathematical representation of the DSTATCOM is proposed to carry out the bifurcation analysis efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the point of common coupling. In addition, the stability regions in the control gain space, as well as the contour lines for different Floquet multipliers are computed. It is demonstrated through bifurcation analysis that the loss of stability in the DSTATCOM is due to the emergence of a Neimark bifurcation. The observations are verified through simulation studies.
Resumo:
This article deals with the non-linear oscillations assessment of a distribution static comensator ooperating in voltage control mode using the bifurcation theory. A mathematical model of the distribution static compensator in the voltage control mode to carry out the bifurcation analysis is derived. The stabiity regions in the Thevein equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers are computed. The AC and DC capacitor impacts on the stability are analyzed through the bifurcation theory. The observations are verified through simulaation studies. The computation of the stability region allows the assessment of the stable operating zones for a power system that includes a distribution static compensator operating in the voltage mode.