988 resultados para Scheduling Problems
Resumo:
We present our approach to real-time service-oriented scheduling problems with the objective of maximizing the total system utility. Different from the traditional utility accrual scheduling problems that each task is associated with only a single time utility function (TUF), we associate two different TUFs—a profit TUF and a penalty TUF—with each task, to model the real-time services that not only need to reward the early completions but also need to penalize the abortions or deadline misses. The scheduling heuristics we proposed in this paper judiciously accept, schedule, and abort real-time services when necessary to maximize the accrued utility. Our extensive experimental results show that our proposed algorithms can significantly outperform the traditional scheduling algorithms such as the Earliest Deadline First (EDF), the traditional utility accrual (UA) scheduling algorithms, and an earlier scheduling approach based on a similar model.
Resumo:
Scheduling optimization is concerned with the optimal allocation of events to time slots. In this paper, we look at one particular example of scheduling problems - the 2015 Joint Statistical Meetings. We want to assign each session among similar topics to time slots to reduce scheduling conflicts. Chapter 1 briefly talks about the motivation for this example as well as the constraints and the optimality criterion. Chapter 2 proposes use of Latent Dirichlet Allocation (LDA) to identify the topic proportions in each session and talks about the fitting of the model. Chapter 3 translates these ideas into a mathematical formulation and introduces a Greedy Algorithm to minimize conflicts. Chapter 4 demonstrates the improvement of the scheduling with this method.
Resumo:
An extensive literature exists on the problems of daily (shift) and weekly (tour) labor scheduling. In representing requirements for employees in these problems, researchers have used formulations based either on the model of Dantzig (1954) or on the model of Keith (1979). We show that both formulations have weakness in environments where management knows, or can attempt to identify, how different levels of customer service affect profits. These weaknesses results in lower-than-necessary profits. This paper presents a New Formulation of the daily and weekly Labor Scheduling Problems (NFLSP) designed to overcome the limitations of earlier models. NFLSP incorporates information on how changing the number of employees working in each planning period affects profits. NFLP uses this information during the development of the schedule to identify the number of employees who, ideally, should be working in each period. In an extensive simulation of 1,152 service environments, NFLSP outperformed the formulations of Dantzig (1954) and Keith (1979) at a level of significance of 0.001. Assuming year-round operations and an hourly wage, including benefits, of $6.00, NFLSP's schedules were $96,046 (2.2%) and $24,648 (0.6%) more profitable, on average, than schedules developed using the formulations of Danzig (1954) and Keith (1979), respectively. Although the average percentage gain over Keith's model was fairly small, it could be much larger in some real cases with different parameters. In 73 and 100 percent of the cases we simulated NFLSP yielded a higher profit than the models of Keith (1979) and Danzig (1954), respectively.
Resumo:
Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.
Resumo:
Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
A Bayesian optimisation algorithm for a nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. When a human scheduler works, he normally builds a schedule systematically following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not yet completed, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this paper, we design a more human-like scheduling algorithm, by using a Bayesian optimisation algorithm to implement explicit learning from past solutions. A nurse scheduling problem from a UK hospital is used for testing. Unlike our previous work that used Genetic Algorithms to implement implicit learning [1], the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The Bayesian optimisation algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, new rule strings have been obtained. Sets of rule strings are generated in this way, some of which will replace previous strings based on fitness. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. For clarity, consider the following toy example of scheduling five nurses with two rules (1: random allocation, 2: allocate nurse to low-cost shifts). In the beginning of the search, the probabilities of choosing rule 1 or 2 for each nurse is equal, i.e. 50%. After a few iterations, due to the selection pressure and reinforcement learning, we experience two solution pathways: Because pure low-cost or random allocation produces low quality solutions, either rule 1 is used for the first 2-3 nurses and rule 2 on remainder or vice versa. In essence, Bayesian network learns 'use rule 2 after 2-3x using rule 1' or vice versa. It should be noted that for our and most other scheduling problems, the structure of the network model is known and all variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus, learning can amount to 'counting' in the case of multinomial distributions. For our problem, we use our rules: Random, Cheapest Cost, Best Cover and Balance of Cost and Cover. In more detail, the steps of our Bayesian optimisation algorithm for nurse scheduling are: 1. Set t = 0, and generate an initial population P(0) at random; 2. Use roulette-wheel selection to choose a set of promising rule strings S(t) from P(t); 3. Compute conditional probabilities of each node according to this set of promising solutions; 4. Assign each nurse using roulette-wheel selection based on the rules' conditional probabilities. A set of new rule strings O(t) will be generated in this way; 5. Create a new population P(t+1) by replacing some rule strings from P(t) with O(t), and set t = t+1; 6. If the termination conditions are not met (we use 2000 generations), go to step 2. Computational results from 52 real data instances demonstrate the success of this approach. They also suggest that the learning mechanism in the proposed approach might be suitable for other scheduling problems. Another direction for further research is to see if there is a good constructing sequence for individual data instances, given a fixed nurse scheduling order. If so, the good patterns could be recognized and then extracted as new domain knowledge. Thus, by using this extracted knowledge, we can assign specific rules to the corresponding nurses beforehand, and only schedule the remaining nurses with all available rules, making it possible to reduce the solution space. Acknowledgements The work was funded by the UK Government's major funding agency, Engineering and Physical Sciences Research Council (EPSRC), under grand GR/R92899/01. References [1] Aickelin U, "An Indirect Genetic Algorithm for Set Covering Problems", Journal of the Operational Research Society, 53(10): 1118-1126,
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.
Resumo:
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.
Resumo:
This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.
Resumo:
The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.
Resumo:
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
This paper presents a technique called Improved Squeaky Wheel Optimisation (ISWO) for driver scheduling problems. It improves the original Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by incorporating two additional steps of Selection and Mutation which implement evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The Analysis step first computes the fitness of a current solution to identify troublesome components. The Selection step then discards these troublesome components probabilistically by using the fitness measure, and the Mutation step follows to further discard a small number of components at random. After the above steps, an input solution becomes partial and thus the resulting partial solution needs to be repaired. The repair is carried out by using the Prioritization step to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, the optimisation in the ISWO is achieved by solution disruption, iterative improvement and an iterative constructive repair process performed. Encouraging experimental results are reported.
Resumo:
Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.