968 resultados para Scale invariant feature transform (SIFT)
Resumo:
Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature ofcompositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precisedefinition of composition. This is the aim of this oral contribution
Resumo:
Quantitative linguistics has provided us with a number of empirical laws that characterise the evolution of languages and competition amongst them. In terms of language usage, one of the most influential results is Zipf’s law of word frequencies. Zipf’s law appears to be universal, and may not even be unique to human language. However, there is ongoing controversy over whether Zipf’s law is a good indicator of complexity. Here we present an alternative approach that puts Zipf’s law in the context of critical phenomena (the cornerstone of complexity in physics) and establishes the presence of a large-scale “attraction” between successive repetitions of words. Moreover, this phenomenon is scale-invariant and universal – the pattern is independent of word frequency and is observed in texts by different authors and written in different languages. There is evidence, however, that the shape of the scaling relation changes for words that play a key role in the text, implying the existence of different “universality classes” in the repetition of words. These behaviours exhibit striking parallels with complex catastrophic phenomena.
Resumo:
Probably the most natural energy functional to be considered for knotted strings is that given by electrostatic repulsion. In the absence of counter-charges, a charged, knotted string evolving along the energy gradient of electrostatic repulsion would progressively tighten its knotted domain into a point on a perfectly circular string. However, in the presence of charge screening self-repelling knotted strings can be stabilized. It is known that energy functionals in which repulsive forces between repelling charges grow inversely proportionally to the third or higher power of their relative distance stabilize self-repelling knots. Especially interesting is the case of the third power since the repulsive energy becomes scale invariant and does not change upon Mobius transformations (reflections in spheres) of knotted trajectories. We observe here that knots minimizing their repulsive Mobius energy show quantization of the energy and writhe (measure of chirality) within several tested families of knots.
Resumo:
We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [K. Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of Lvy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.
Resumo:
The design of appropriate multifractal analysis algorithms, able to correctly characterize the scaling properties of multifractal systems from experimental, discretized data, is a major challenge in the study of such scale invariant systems. In the recent years, a growing interest for the application of the microcanonical formalism has taken place, as it allows a precise localization of the fractal components as well as a statistical characterization of the system. In this paper, we deal with the specific problems arising when systems that are strictly monofractal are analyzed using some standard microcanonical multifractal methods. We discuss the adaptations of these methods needed to give an appropriate treatment of monofractal systems.
Resumo:
Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.
Resumo:
The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature of compositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precise definition of composition. This is the aim of this oral contribution
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Soil aggregation is an index of soil structure measured by mean weight diameter (MWD) or scaling factors often interpreted as fragmentation fractal dimensions (D-f). However, the MWD provides a biased estimate of soil aggregation due to spurious correlations among aggregate-size fractions and scale-dependency. The scale-invariant D-f is based on weak assumptions to allow particle counts and sensitive to the selection of the fractal domain, and may frequently exceed a value of 3, implying that D-f is a biased estimate of aggregation. Aggregation indices based on mass may be computed without bias using compositional analysis techniques. Our objective was to elaborate compositional indices of soil aggregation and to compare them to MWD and D-f using a published dataset describing the effect of 7 cropping systems on aggregation. Six aggregate-size fractions were arranged into a sequence of D-1 balances of building blocks that portray the process of soil aggregation. Isometric log-ratios (ilrs) are scale-invariant and orthogonal log contrasts or balances that possess the Euclidean geometry necessary to compute a distance between any two aggregation states, known as the Aitchison distance (A(x,y)). Close correlations (r>0.98) were observed between MWD, D-f, and the ilr when contrasting large and small aggregate sizes. Several unbiased embedded ilrs can characterize the heterogeneous nature of soil aggregates and be related to soil properties or functions. Soil bulk density and penetrater resistance were closely related to A(x,y) with reference to bare fallow. The A(x,y) is easy to implement as unbiased index of soil aggregation using standard sieving methods and may allow comparisons between studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Currently the interest in large-scale systems with a high degree of complexity has been much discussed in the scientific community in various areas of knowledge. As an example, the Internet, protein interaction, collaboration of film actors, among others. To better understand the behavior of interconnected systems, several models in the area of complex networks have been proposed. Barabási and Albert proposed a model in which the connection between the constituents of the system could dynamically and which favors older sites, reproducing a characteristic behavior in some real systems: connectivity distribution of scale invariant. However, this model neglects two factors, among others, observed in real systems: homophily and metrics. Given the importance of these two terms in the global behavior of networks, we propose in this dissertation study a dynamic model of preferential binding to three essential factors that are responsible for competition for links: (i) connectivity (the more connected sites are privileged in the choice of links) (ii) homophily (similar connections between sites are more attractive), (iii) metric (the link is favored by the proximity of the sites). Within this proposal, we analyze the behavior of the distribution of connectivity and dynamic evolution of the network are affected by the metric by A parameter that controls the importance of distance in the preferential binding) and homophily by (characteristic intrinsic site). We realized that the increased importance as the distance in the preferred connection, the connections between sites and become local connectivity distribution is characterized by a typical range. In parallel, we adjust the curves of connectivity distribution, for different values of A, the equation P(k) = P0e
Resumo:
Scale-invariant running couplings are constructed for several quarks being decoupled together, without reference to intermediate thresholds. Large-momentum scales can also be included. The result is a multi-scale generalization of the renormalization group applicable to any order. Inconsistencies in the usual decoupling procedure with a single running coupling can then be avoided, e.g., when cancelling anomalous corrections from t, b quarks to the axial charge of the proton. (c) 2006 Elsevier B.V. All rights reserved.