895 resultados para STRUCTURE-BASED DRUG DESIGN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We identified nine small-molecule hit compounds of Heat shock 70 kDa protein 5 (HSPA5) from cascade in silico screening based on the binding modes of the tetrapeptides derived from the peptide substrate or inhibitors of Escherichia coli HSP70. Two compounds exhibit promising inhibition activities from cancer cell viability and tumor inhibition assays. The binding modes of the hit compounds provide a platform for development of selective small molecule inhibitors of HSPA5. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpa (hER alpha) and beta (hER beta). Because the levels and relative proportion of hER alpha and hER beta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hER alpha and hER beta. Significant statistical coefficients were obtained (hER alpha, q(2) = 0.76; hER beta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hER alpha and hER beta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design or novel hER modulators with improved selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main theme of this thesis is that there is a common structural basis for drugs acting on the central nervous system (CNS), and that this concept may be used to design new CNS-active drugs which have greater specificity and hence less side-effects. To develop these ideas, the biological basis of how drugs modify CMS neurotransmission is described, and illustrated using dopaminergic pathways. An account is then given of the use of physicochemical concepts in contemporary drug design. The complete conformational analysis of several antipsychotic drugs is used to illustrate some of these techniques in the development of a model for antipsychotic drug action. After reviewing current structure-activity studies in several classes of CNS drugs (antipsychotics, anti-depressants, stimulants, hal1ucinogens, anticonvulsants and analgesics), a hypothesis for a common structural basis of CNS drug action is proposed- This is based on a topographical comparison of the X-ray structures of eight representative CNS-active drugs, and consists of three parts: 1.there is a common structural basis for the activity of many different CNS-active drug classes; 2. an aromatic ring and a nitrogen atom are the primary binding groups whose topographical arrangement is fundamental to the activity of these drug classes; 3. the nature and placement of secondary binding determines different classes of CNS drug activity. A four-Point model for this common structural basis is then defined using 14- CNS-active drug structures that include the original eight used in proposing the hypothesis. The coordinates of this model are: R1 (0. 3.5, 0), R2 (0, -3.5, O), N (4.8. -0.3, 1.4), and R3 (6.3, 1.3, 0), where R1 and R2 represent the point locations of a hydrophobic interaction of the common aromatic ring with a receptor, and R3 locates the receptor point for a hydrogen bond involving the common nitrogen, N. Extended structures were used to define the receptor points R1, R2 and R3, and the complete conformational space of each of the 14 molecules was considered. It is then shoun that the model may be used to predict whether a given structure is likely to show CNS activity: a search over 1,000 entries in the current Merck Index shows a high probability (82%) of CNS activity in compounds fitting the structural model. Analysis of CNS neurotransmitters and neuropeptides shows that these fit the common model well. Based on the available evidence supporting chemical evolution, protein evolution, and the evolution of neurotransmitter functions, it is surmised that the aromatic ring/nitrogen atom pharmacophore proposed in the common model supports the idea of the evolution of CNS receptors and their neurotransmitters, possibly from an aromatic amine or acety1cho1ine acting as a primaeval communicating molecule. The third point in the hypothesis trilogy is then addressed. The extensive conformation-activity analyses that have resulted in well-defined models for five separate CNS drug classes are used to map out the locations of secondary binding groups relative to the common model for anti-psychotics, antidepressants, analgesics, anticholinergics, and anticonvulsants. With this information, and knowledge derived from receptor-binding data, it is postulated that drugs having specified activity could be designed. In order to generate novel structures having a high probability of CNS-activity, a process of drug design is described in which known CNS structures are superimposed topographically using the common model as a template. Atoms regarded as superfluous may be selectively deleted and the required secondary binding groups added in predicted locations to give novel structures. It is concluded that this process provides the basis for the rational design of new lead compounds which could further be optimized for potent and specific CNS activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The telomerase enzyme is a potential therapeutic target in many human cancers. A series of potent inhibitors has been designed by computer modeling, which exploit the unique structural features of quadruplex DNA. These 3,6,9-trisubstituted acridine inhibitors are predicted to interact selectively with the human DNA quadruplex structure, as a means of specifically inhibiting the action of human telomerase in extending the length of single-stranded telomeric DNA. The anilino substituent at the 9-position of the acridine chromophore is predicted to lie in a third groove of the quadruplex. Calculated relative binding energies predict enhanced selectivity compared with earlier 3,6-disubstituted compounds, as a result of this substituent. The ranking order of energies is in accord with equilibrium binding constants for quadruplex measured by surface plasmon resonance techniques, which also show reduced duplex binding compared with the disubstituted compounds. The 3,6,9-trisubstututed acridines have potent in vitro inhibitory activity against human telomerase, with EC50 values of up to 60 nM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests