943 resultados para SMALL-WORLD
Resumo:
Este trabajo de grado propone identificar la utilidad de las relaciones estratégicas comunitarias y el marketing en la administración de negocios con clientes corporativos, también se toman en cuenta conceptos como el marketing organizacional y relacional, estos conceptos ayudan en la investigación a determinar relaciones estratégicas entre las empresas, y el beneficio que estas le generan a las corporaciones; para así fomentar la implementación de estas estrategias en a las empresas a nivel nacional e internacional, así mismo, identificar el concepto de comunidad que tienen los clientes corporativos y como este concepto se puede adaptar al entorno que los rodea. Con el fin de entender las funciones y características de un cliente corporativo, así como su comportamiento, los objetivos específicos de la investigación son describir las estrategias de marketing en la administración de negocios con clientes corporativos, determinar si existe el concepto de comunidad en la administración de negocios con clientes corporativos y determinar si se utilizan relaciones estratégicas comunitarias en la administración de negocios con clientes corporativos. La metodología que se planteó usar fue teórica-conceptual, teniendo en cuenta el marketing y las relaciones estratégicas comunitarias de los clientes corporativos. Llevando la investigación al ámbito de la gerencia y dirección, los resultados que se obtuvieron gracias a la investigación, ayudaran a potenciar la dirección de las empresas, donde se evalué la verdadera utilidad de las estrategias basadas en las relaciones comunitarias y marketing en los negocios con clientes corporativos. Las estrategias comunitarias y el marketing influencian de manera directa las relaciones de las compañias con sus clientes corporativos, debido a que marketing nos permite extender la relación y generar una utilidad a futuro entre ambas partes. De la investigación se concluye que las empresas que logran crear estrategias comunitarias y relaciones estrechas entre ellas, tienden a tener mejores utilidades en el largo plazo y ser empresas más sostenibles.
Resumo:
En una aproximación a las convergencias entre el arte, la comunicación y el diseño, se ubican aspectos relacionales y performáticos que se convierten en un espacio para la indagación de sus sobreexposiciones disciplinarias, bajo estas nociones, surgió la interrogante ¿Cómo contribuye el diseño en la generación de accionesper formáticas que promueven interacciones sociales, para ejecutar un papel específico en lugares antropológicos, para convertir a los usuarios en audiencia y en productores de significado? El caso publicitario Small World Machines de Coca-Cola, se consideró como un claro ejemplo donde estos aspectos se muestran claramente para, a partir de su análisis, tratar de verificar el grado en el que la ejecución de esta campaña publicitaria involucra factores performáticos, en su concepción, producción y uso dentro de los conceptos que son manejados en el territorio disciplinario del diseño. En este contexto y búsqueda se pretende: identificar los elementos claves del contexto histórico y social previo a la instalación de los dispensadores en India y Pakistán, analizar el carácter performático y relacional en el diseño en la campaña Small World Machines y; analizar las dinámicas de respuesta que generó la campaña en sus usuarios y públicos. Los objetivos pretenden contribuir con una finalidad: Explicar cómo la performatividad en el diseño influye en las interacciones sociales, a partir del estudio de caso de la campaña Small World Machines de Coca-Cola. Para su consecución se realizó el análisis de la situación histórica, social y territorial en la que esta campaña publicitaria se llevó a cabo (las ciudades de Lahore y Nueva Dehli), alimentado por los conceptos que se desarrollan en el cuerpo teórico de este planteamiento, para los que se recurrió a la consulta bibliográfica y documental como principal ingrediente, sustentada por entrevistas a personajes que han estado involucrados con la realidad de estos países y con las disciplinas del diseño. Finalmente, se tomó la campaña para estudiarla desde la perspectiva teórica planteada, donde los conceptos de estética relacional, performatividad, interacción y teatralidad, serán la base para este acercamiento, adicionando los parámetros que nutrieron esta investigación en su primera sección donde lo histórico, social y económico generaron el contexto adecuado para su análisis. La mirada crítica al caso seleccionado para su estudio, aporta con elementos fuera del territorio de análisis y estudio de la publicidad y la comunicación. En este ejercicio, se demuestra la fragilidad de los límites entre la simulación y la expresividad de la publicidad.
Resumo:
For many networks in nature, science and technology, it is possible to order the nodes so that most links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts, are present. Given a network as a set of observed links (interactions), the task of finding an ordering of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic small-world model of Watts & Strogatz (1998, Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral algorithm for periodic reordering. By generalizing the range-dependent random graph class of Grindrod (2002, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic data show that the new algorithm can detect periodic structure, even in the presence of noise. Further experiments on real biological data sets then show that some networks are better regarded as periodic than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios) evidence of periodicity in biological networks.
Resumo:
Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks.
Resumo:
A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
A structure-dynamic approach to cortical systems is reported which is based on the number of paths and the accessibility of each node. The latter measurement is obtained by performing self-avoiding random walks in the respective networks, so as to simulate dynamics, and then calculating the entropies of the transition probabilities for walks starting from each node. Cortical networks of three species, namely cat, macaque and humans, are studied considering structural and dynamical aspects. It is verified that the human cortical network presents the highest accessibility and number of paths (in terms of z-scores). The correlation between the number of paths and accessibility is also investigated as a mean to quantify the level of independence between paths connecting pairs of nodes in cortical networks. By comparing the cortical networks of cat, macaque and humans, it is verified that the human cortical network tends to present the largest number of independent paths of length larger than four. These results suggest that the human cortical network is potentially the most resilient to brain injures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed.
Resumo:
Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied by edges having different displacement velocities in transportation networks. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highway network enhanced by some of the main US airlines routes. We also show that the travel time in these two networks is drastically changed by attacks targeting the edges with large displacement velocities. (C) 2011 Elsevier By. All rights reserved.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
The influence of the thalamus on the diversity of cortical activations is investigated in terms of the Ising model with respect to progressive levels of cortico-thalamic connectivity. The results show that better diversity is achieved at lower modulation levels, being higher than those obtained with counterpart network models.
Resumo:
Modeling Clean Energy A New Home Sweet Home Opening a Dialogue Walking in Someone Else's Shoes Delayed Reaction, Strong Occupation New Affiliation with Columbia Same Place, Different Mission Giving Marriage a New Ring TwitterFEED Microcosm of a Small World