990 resultados para SINGULAR CONTINUOUS-SPECTRUM


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we develop a new method to determine the essential spectrum of coupled systems of singular differential equations. Applications to problems from magnetohydrodynamics and astrophysics are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new non-linear comparison method of charge-division readout scheme is conceived and the first design of a multi-hit two-dimensional position-sensitive energy spectrum Si(Au) surface barrier detector with a continuous sensitive area is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singular value decomposition - least squares (SVDLS), a new method for processing the multiple spectra with multiple wavelengths and multiple components in thin layer spectroelectrochemistry has been developed. The CD spectra of three components, norepinephrine reduced form of norepinephrinechrome and norepinephrinequinone, and their fraction distributions with applied potential were obtained in three redox processes of norepinephrine from 30 experimental CD spectra, which well explains electrochemical mechanism of norepinephrine as well as the changes in the CD spectrum during the electrochemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B.M. Brown, M.S.P. Eastham, I. Wood: Conditions for the spectrum associated with a leaky wire to contain the interval [? ?2/4, ?), Arch. Math., 90, 6 (2008), 554-558

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Snd ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Early descriptive work and controlled family and adoption studies support the hypothesis that a range of personality and nonschizophrenic psychotic disorders aggregate in families of schizophrenic probands. Can we validate, using molecular polygene scores from genome-wide association studies (GWAS), this schizophrenia spectrum? Methods: The predictive value of polygenic findings reported by the Psychiatric GWAS Consortium (PGC) was applied to 4 groups of relatives from the Irish Study of High-Density Schizophrenia Families (ISHDSF; N = s) differing on their assignment within the schizophrenia spectrum. Genome-wide single nucleotide polymorphism data for affected and unaffected relatives were used to construct per-individual polygene risk scores based on the PGC stage-I results. We compared mean polygene scores in the ISHDSF with mean scores in ethnically matched population controls (N = 929). Results: The schizophrenia polygene score differed significantly across diagnostic categories and was highest in those with narrow schizophrenia spectrum, lowest in those with no psychiatric illness, and in-between in those classified in the intermediate, broad, and very broad schizophrenia spectrum. Relatives of all of these groups of affected subjects, including those with no diagnosis, had schizophrenia polygene scores significantly higher than the control sample. Conclusions: In the relatives of high-density families, the observed pattern of enrichment of molecular indices of schizophrenia risk suggests an underlying, continuous liability distribution and validates, using aggregate common risk alleles, a genetic basis for the schizophrenia spectrum disorders. In addition, as predicted by genetic theory, nonpsychotic members of multiply-affected schizophrenia families are significantly enriched for replicated, polygenic risk variants compared with the general population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a spin-1/2 particle in the gravitational field of a massive body of radius R which slightly exceeds the Schwarzschild radius rs, possesses a dense spectrum of narrow resonances. Their lifetimes and density tend to infinity in the limit R → rs. We determine the cross section of the particle capture into these resonances and show that it is equal to the spin-1/2 absorption cross section for a Schwarzschild black hole. Thus black-hole properties may emerge in a non-singular static metric prior to the formation of a black hole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.