895 resultados para SEQUENTIAL CONVERGENCE
Resumo:
Various time-memory tradeoffs attacks for stream ciphers have been proposed over the years. However, the claimed success of these attacks assumes the initialisation process of the stream cipher is one-to-one. Some stream cipher proposals do not have a one-to-one initialisation process. In this paper, we examine the impact of this on the success of time-memory-data tradeoff attacks. Under the circumstances, some attacks are more successful than previously claimed while others are less. The conditions for both cases are established.
Resumo:
Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
As an international norm, the Responsibility to Protect (R2P) has gained substantial influence and institutional presence—and created no small controversy—in the ten years since its first conceptualisation. Conversely, the Protection of Civilians in Armed Conflict (PoC) has a longer pedigree and enjoys a less contested reputation. Yet UN Security Council action in Libya in 2011 has thrown into sharp relief the relationship between the two. UN Security Council Resolutions 1970 and 1973 follow exactly the process envisaged by R2P in response to imminent atrocity crimes, yet the operative paragraphs of the resolutions themselves invoke only PoC. This article argues that, while the agendas of PoC and R2P converge with respect to Security Council action in cases like Libya, outside this narrow context it is important to keep the two norms distinct. Peacekeepers, humanitarian actors, international lawyers, individual states and regional organisations are required to act differently with respect to the separate agendas and contexts covered by R2P and PoC. While overlap between the two does occur in highly visible cases like Libya, neither R2P nor PoC collapses normatively, institutionally or operationally into the other.
Resumo:
Sfinks is a shift register based stream cipher designed for hardware implementation. The initialisation state update function is different from the state update function used for keystream generation. We demonstrate state convergence during the initialisation process, even though the individual components used in the initialisation are one-to-one. However, the combination of these components is not one-to-one.
Resumo:
Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.
Resumo:
This article is a response to Kim Dalton's 2011 Henry Mayer Lecture. It focuses on Dalton's discussion of Australian content in the context of the government's ongoing Convergence Review.
Resumo:
Fusion techniques have received considerable attention for achieving lower error rates with biometrics. A fused classifier architecture based on sequential integration of multi-instance and multi-sample fusion schemes allows controlled trade-off between false alarms and false rejects. Expressions for each type of error for the fused system have previously been derived for the case of statistically independent classifier decisions. It is shown in this paper that the performance of this architecture can be improved by modelling the correlation between classifier decisions. Correlation modelling also enables better tuning of fusion model parameters, ‘N’, the number of classifiers and ‘M’, the number of attempts/samples, and facilitates the determination of error bounds for false rejects and false accepts for each specific user. Error trade-off performance of the architecture is evaluated using HMM based speaker verification on utterances of individual digits. Results show that performance is improved for the case of favourable correlated decisions. The architecture investigated here is directly applicable to speaker verification from spoken digit strings such as credit card numbers in telephone or voice over internet protocol based applications. It is also applicable to other biometric modalities such as finger prints and handwriting samples.
Resumo:
Fusion techniques have received considerable attention for achieving performance improvement with biometrics. While a multi-sample fusion architecture reduces false rejects, it also increases false accepts. This impact on performance also depends on the nature of subsequent attempts, i.e., random or adaptive. Expressions for error rates are presented and experimentally evaluated in this work by considering the multi-sample fusion architecture for text-dependent speaker verification using HMM based digit dependent speaker models. Analysis incorporating correlation modeling demonstrates that the use of adaptive samples improves overall fusion performance compared to randomly repeated samples. For a text dependent speaker verification system using digit strings, sequential decision fusion of seven instances with three random samples is shown to reduce the overall error of the verification system by 26% which can be further reduced by 6% for adaptive samples. This analysis novel in its treatment of random and adaptive multiple presentations within a sequential fused decision architecture, is also applicable to other biometric modalities such as finger prints and handwriting samples.
Resumo:
Statistical dependence between classifier decisions is often shown to improve performance over statistically independent decisions. Though the solution for favourable dependence between two classifier decisions has been derived, the theoretical analysis for the general case of 'n' client and impostor decision fusion has not been presented before. This paper presents the expressions developed for favourable dependence of multi-instance and multi-sample fusion schemes that employ 'AND' and 'OR' rules. The expressions are experimentally evaluated by considering the proposed architecture for text-dependent speaker verification using HMM based digit dependent speaker models. The improvement in fusion performance is found to be higher when digit combinations with favourable client and impostor decisions are used for speaker verification. The total error rate of 20% for fusion of independent decisions is reduced to 2.1% for fusion of decisions that are favourable for both client and impostors. The expressions developed here are also applicable to other biometric modalities, such as finger prints and handwriting samples, for reliable identity verification.
Resumo:
This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, resulting in a further reduction of the effective key space
Resumo:
Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.
Resumo:
In recent years, it has been found that many phenomena in engineering, physics, chemistry and other sciences can be described very successfully by models using mathematical tools from fractional calculus. Recently, noted a new space and time fractional Bloch-Torrey equation (ST-FBTE) has been proposed (see Magin et al. (2008)), and successfully applied to analyse diffusion images of human brain tissues to provide new insights for further investigations of tissue structures. In this paper, we consider the ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we propose a new effective implicit numerical method (INM) for the STFBTE whereby we discretize the Riesz fractional derivative using a fractional centered difference. Secondly, we prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent, and the order of convergence of the implicit numerical method is ( T2 - α + h2 x + h2 y + h2 z ). Finally, some numerical results are presented to support our theoretical analysis.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.