949 resultados para SCHRODINGER-POISSON EQUATIONS
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.
Resumo:
OBJECTIVES: The aim of this study was to determine whether the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)- or Cockcroft-Gault (CG)-based estimated glomerular filtration rates (eGFRs) performs better in the cohort setting for predicting moderate/advanced chronic kidney disease (CKD) or end-stage renal disease (ESRD). METHODS: A total of 9521 persons in the EuroSIDA study contributed 133 873 eGFRs. Poisson regression was used to model the incidence of moderate and advanced CKD (confirmed eGFR < 60 and < 30 mL/min/1.73 m(2) , respectively) or ESRD (fatal/nonfatal) using CG and CKD-EPI eGFRs. RESULTS: Of 133 873 eGFR values, the ratio of CG to CKD-EPI was ≥ 1.1 in 22 092 (16.5%) and the difference between them (CG minus CKD-EPI) was ≥ 10 mL/min/1.73 m(2) in 20 867 (15.6%). Differences between CKD-EPI and CG were much greater when CG was not standardized for body surface area (BSA). A total of 403 persons developed moderate CKD using CG [incidence 8.9/1000 person-years of follow-up (PYFU); 95% confidence interval (CI) 8.0-9.8] and 364 using CKD-EPI (incidence 7.3/1000 PYFU; 95% CI 6.5-8.0). CG-derived eGFRs were equal to CKD-EPI-derived eGFRs at predicting ESRD (n = 36) and death (n = 565), as measured by the Akaike information criterion. CG-based moderate and advanced CKDs were associated with ESRD [adjusted incidence rate ratio (aIRR) 7.17; 95% CI 2.65-19.36 and aIRR 23.46; 95% CI 8.54-64.48, respectively], as were CKD-EPI-based moderate and advanced CKDs (aIRR 12.41; 95% CI 4.74-32.51 and aIRR 12.44; 95% CI 4.83-32.03, respectively). CONCLUSIONS: Differences between eGFRs using CG adjusted for BSA or CKD-EPI were modest. In the absence of a gold standard, the two formulae predicted clinical outcomes with equal precision and can be used to estimate GFR in HIV-positive persons.
Resumo:
"NSF - OCA - GJ-36936 - 000006."
Resumo:
Includes bibliography.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
MSC 2010: 26A33, 33E12, 33C60, 35R11
Resumo:
We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.
Resumo:
In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
In this paper we discuss the existence of solutions for a class of abstract partial neutral functional differential equations.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.