239 resultados para Rotors (windings)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar magnetic elements are becoming a replacement for their conventional rivals. Among the reasons supporting their application, is their smaller size. Taking less bulk in the electronic package is a critical advantage from the manufacturing point of view. The planar structure consists of the PCB copper tracks to generate the desired windings .The windings on each PCB layer could be connected in various ways to other winding layers to produce a series or parallel connection. These windings could be applied coreless or with a core depending on the application in Switched Mode Power Supplies (SMPS). Planar shapes of the tracks increase the effective conduction area in the windings, brings about more inductance compared to the conventional windings with the similar copper loss case. The problem arising from the planar structure of magnetic inductors is the leakage current between the layers generated by a pulse width modulated voltage across the inductor. This current value relies on the capacitive coupling between the layers, which in its turn depends on the physical parameters of the planar scheme. In order to reduce this electrical power dissipation due to the leakage current and Electromagnetic Interference (EMI), reconsideration in the planar structure might be effective. The aim of this research is to address problem of these capacitive coupling in planar layers and to find out a better structure for the planar inductance which offers less total capacitive coupling and thus less thermal dissipation from the leakage currents. Through Finite Element methods (FEM) several simulations have been carried out for various planar structures. The labs prototypes of these structures are built with the similar specification of the simulation cases. The capacitive couplings of the samples are determined with Spectrum Analyser whereby the test analysis verified the simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superconducting composite Bi-2212/Ag tapes and their joints are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have a critical current (Ic) between 8 and 26A, depending on tape thickness and the number of Bi-2212 layers. Current transmissions between 80% and 100% have been achieved through the joints of tapes. Different types of HTS joints of Bi-2212/Ag laminated tapes are made and their transport properties during winding operations are investigated. Irreversible strain values (ε irrev) for laminated tapes and their joints are determined and it is found that the degradation of Ic during tape bending depends on the type of joint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses effects of winding structure on capacitive coupling reduction appearing in the planar magnetic elements at high frequencies. Capacitive coupling appears between the conductive layers of the planar transformers resulting in high current spikes and consequently high power dissipation. With finite element analysis, the equivalent capacitive coupling of magnetic elements is calculated for different structures of planar windings. Finally, a new winding structure with minimum capacitive coupling is introduced for the planar magnetic elements, which is verified by simulation and experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a large interconnected power system, disturbances initiated by a fault or other events cause acceleration in the generator rotors with respect to their synchronous reference frame. This acceleration of rotors can be described by two different dynamic phenomena, as shown in existing literature. One of the phenomena is simultaneous acceleration and the other is electromechanical wave propagation, which is characterized by travelling waves in terms of a wave equation. This paper demonstrates that depending on the structure of the system, the exhibited dynamic response will be dominated by one phenomenon or the other or a mixture of both. Two system structures of choice are examined, with each structure exemplifying each phenomenon present to different degrees in their dynamic responses. Prediction of dominance of either dynamic phenomenon in a particular system can be determined by taking into account the relative sizes of the values of its reduced admittance matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inductive fault current limiters (FCLs) have several advantages, such as significant current limitation, immediate triggering and relatively low losses. Despite these advantages, saturated core FCLs have not been commercialized due to its large size and associated high costs. A major remaining challenge is to reduce the footprint of the device. In this paper, a solution to reduce the overall footprint is proposed and discussed. In arrangements of windings on a core in reactors such as FCLs, the core is conventionally grounded. The electrical insulation distance between high voltage winding and core can be reduced if the core is left at floating potential. This paper shows the results of the investigation carried out on the insulation of such a coil-core assembly. Two experiments were conducted. In the first, the behavior of the apparatus under high voltage conditions was assessed by performing power frequency and lightning impulse tests. In the second experiment, a low voltage test was conducted during which voltages of different frequencies and pulses with varying rise times were applied. A finite element simulation was also carried out for comparison and further investigation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration of rooftop photovoltaics (PVs) in residential networks at moderate penetration levels is becoming a reality in many countries including Australia. Despite the technical challenges in properly accommodating PV units, one of the major benefits is the ability of PV units to extend useful life time of distribution transformers. This effect is not quantified in the existing literature. This paper carries out an analysis into the impacts of rooftop PVs at different penetration levels on the performance of distribution transformers and residential networks. This paper presents a methodology to quantify the benefit of the distribution transformer life extension brought about by customer-owned rooftop PV units. The proposed methodology is applied to a real distribution system with various scenarios, including different penetration levels. The results show the distribution transformer loss-of-life function, as a function of the rooftop PV penetration level, is monotonically decreasing function which saturates after a certain penetration level. The best life improvements occur with transformers that are highly loaded and the presence of a significant PV installation may support the deferral of transformer upgrades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.