552 resultados para Rostral ventrolateral medulla


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypothalamic–pituitary–adrenal axis activation is a hallmark of the stress response. In the case of physical stressors, there is considerable evidence that medullary catecholamine neurones are critical to the activation of the paraventricular nucleus corticotropin-releasing factor cells that constitute the apex of the hypothalamic–pituitary–adrenal axis. In contrast, it has been thought that hypothalamic–pituitary–adrenal axis responses to emotional stressors do not involve brainstem neurones. To investigate this issue we have mapped patterns of restraint-induced neuronal c-fos expression in intact animals and in animals prepared with either paraventricular nucleus-directed injections of a retrograde tracer, lesions of paraventricular nucleus catecholamine terminals, or lesions of the medulla corresponding to the A1 or A2 noradrenergic cell groups. Restraint-induced patterns of neuronal activation within the medulla of intact animals were very similar to those previously reported in response to physical stressors, including the fact that most stressor-responsive, paraventricular nucleus-projecting cells were certainly catecholaminergic and probably noradrenergic. Despite this, the destruction of paraventricular nucleus catecholamine terminals with 6-hydroxydopamine did not alter corticotropin-releasing factor cell responses to restraint. However, animals with ibotenic acid lesions encompassing either the A1 or A2 noradrenergic cell groups displayed significantly suppressed corticotropin-releasing factor cell responses to restraint. Notably, these medullary lesions also suppressed neuronal responses in the medial amygdala, an area that is now considered critical to hypothalamic–pituitary–adrenal axis responses to emotional stressors and that is also known to display a significant increase in noradrenaline turnover during restraint.

We conclude that medullary neurones influence corticotropin-releasing factor cell responses to emotional stressors via a multisynaptic pathway that may involve a noradrenergic input to the medial amygdala. These results overturn the idea that hypothalamic–pituitary–adrenal axis response to emotional stressors can occur independently of the brainstem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis, accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1β (IL-1β). Because IL-1β is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1β elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1β. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1β (1 μg/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1β is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nucleus of the solitary tract (NTS) is the site of the first synapse of cardiovascular afferent fibers in the central nervous system. Important mechanisms for cardiovascular regulation are also present in the caudal pressor area (CPA) localized at the caudal end of the ventrolateral medulla. In the present study we sought to investigate the role of the commissural subnucleus of the NTS (commNTS) on pressor and tachycardic responses induced by L-glutamate injected into the CPA. Male Holtzman rats (n=8 rats/group) anesthetized with urethane (1.2 g/kg of body weight, iv) received injections of the GABAA receptor agonist muscimol into the commNTS. Unilateral injection of L-glutamate (10 nmol/ 100 nL) into the CPA increased mean arterial pressure (MAP, 31 4 mm Hg, vs. saline: 3 +/- 2 mm Hg) and heart rate (HR, 44 8 bpm, vs. saline: 10 7 bpm). inhibition of commNTS neurons with muscimol (120 pmol/60 nL) abolished the increase in MAP (9 4 mm Hg) and HR (17 7 bpm) produced by L-glutamate into the CPA. The present results suggest that the pressor and tachycardic responses to CPA activation are dependent on commNTS mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABA(A) agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 +/- 11 and to 142 +/- 6 mmHg, respectively, vs. control: 105 +/- 4 mmHg; HR to 407 +/- 15 and to 412 +/- 18 beats per minute (bpm), respectively, vs. control: 352 +/- 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 +/- 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 +/- 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague-Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)(-1)) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)(-1)). Balloon inflation greatly decreased the intake of 0.3 M NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL-1) or free saporin (sham, 0.021 ng.nL-1) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg-1, b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid. © 2013 da Silva et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A regulação fina do volume e osmolaridade dos líquidos corporais é fundamental para a sobrevivência. Qualquer variação na composição do meio interno ativa mecanismos comportamentais, neurais e hormonais compensatórios que controlam a ingestão e excreção de água e eletrólitos a fim de manter a homeostase hidroeletrolítica. Alterações na faixa de 1-2% na osmolaridade sanguínea estimulam a liberação de arginina vasopressina (AVP) que resulta em antidiurese além de ocitocina (OT) e peptídeo natriurético atrial (ANP) que promovem a natriurese. Trabalhos realizados em nosso laboratório utilizando o modelo experimental de expansão do volume extracelular (EVEC) mostraram ativação de neurônios magnocelulares ocitocinérgicos localizados no núcleo paraventricular (PVN) e núcleo supra-óptico (SON) responsáveis pela secreção de OT e AVP, igualmente alteradas em resposta a este estímulo. A participação do sistema nervoso simpático nestas condições tem sido levantada. Projeções medulares e tronco-encefálicas (simpáticas) para o hipotálamo poderiam atuar de forma seletiva inibindo sinalizações para a ingestão e estimulando sinalizações para excreção de água e eletrólitos. O papel de vias noradrenérgicas tronco-encefálicas nesta regulação ainda precisa ser mais bem estabelecido. Assim sendo, objetivamos neste estudo esclarecer o papel do sistema nervoso simpático (via noradrenérgicas) na regulação das alterações induzidas pelo modelo de EVEC, analisando por cromatografia líquida de alta eficácia o conteúdo de noradrenalina (NA), adrenalina (AD) e serotonina (5-HT) em estruturas do tronco cerebral como núcleo do trato solitário (NTS), bulbo rostro-ventro lateral (RVLM), locus coeruleus (LC) e núcleo dorsal da rafe (NDR) e estruturas hipotalâmicas como SON e PVN. Procuramos ainda, através de estudos imunocitoquímicos determinar alterações no padrão de ativação neuronal pela análise de Fos-TH ou Fos-5HT nas estruturas acima mencionadas em condições experimentais nas quais são induzidas alterações do volume do líquido extracelular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammation is an immune complex-related tissue damage and / or cell caused by chemical, physical, immunological or microbial. The inflammatory process involves a complex cascade of biochemical and cellular events, including awareness and receptor activation, lysis and tissue repair. In general, tissue damage trigger a local inflammatory response by recruiting leukocytes, which release inflammatory mediators. These substances are able to sensitize nociceptors. After synaptic transmission and signal modulation by nociceptive sensory neurons, these signals are perceived as pain. Pain is an experience that involves multiple factors. The route of the supraspinal pain control originates in many brain regions, such as substance periarquedutal gray (PAG), median raphe nucleus and rostral ventromedial medulla (RVM) and have a critical role in determining the chronic and acute pain. Anti-inflammatory drugs (NSAIDs) are used to control inflammation, which inhibit the inflammatory mediators, but can cause side effects such as stomach ulcers and cardiovascular damage. An alternative for the treatment of pain and inflammation is the use of plant species. The genus Eugenia belongs to the family Myrtaceae, one of the largest botanical families of expression in the Brazilian ecosystems. From the pharmacological point of view, studies of similar species crude extracts showed the presence of anti-inflammatory, analgesic, antifungal, hypotensive, antidiabetic and antioxidant activity of some species. As a class of importance in therapeutic phytochemical, the flavonoids has represented an important group with significant anti-inflammatory and gastroprotective, and are present in a significant way in the chemical composition of genus Eugenia. The project´s overall objective is to evaluate the antinociceptive and anti-inflammatory activities from hydroalcoholic extract of leaves of Eugenia punicifolia (EHEP). In this work we performed acute toxicity ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.