980 resultados para Rocks, Carbonate -- Catalonia -- Llorà
Resumo:
This collective monography by a group of lithologists from the Geological Institute of the USSR Academy of Sciences summarizes materials of the Deep-Sea Drilling Project from the Atlantic Ocean. It gives results of processing materials on the sequences drilled during DSDP Legs 41, 45, 48 and 49. These studies were based on lithological-facial analysis combined with detailed mineralogical-petrographic description. Its chapters give a number of ideas on formation of the Earth sedimentary cover, which can be used for compilation of regional and global schemes of ocean paleogeography, reconstruction of history of some structures in the World Ocean, correlation between sedimentary processes on continents and in oceans, estimation of perspectives for oil and gas fields and ore formation.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
The isotopic (dD, d18O, d13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of dD and d18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (d18O, d13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.
Resumo:
Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.
Resumo:
Physical properties of basalts from Ocean Drilling Program Sites 800 and 801 in the Pigafetta Basin and Site 802 in the East Mariana Basin, including porosity, wet-bulk density, grain density, compressional wave velocity, and thermal conductivity, were measured aboard JOIDES Resolution during Leg 129. The ranges for the properties are large, as typified by the velocity, which varies from 3.46 to 6.59 km/s. Extensively altered basalts immediately above and below a silicified hydrothermal deposit (60-69 m sub-basement depth) at Site 801 display the highest porosity, and lowest bulk density, velocity, and thermal conductivity, whereas the slightly altered rocks from Site 802 and the lowermost part of Site 801 represent the other extreme in physical properties variations. In order to better establish the relationship between physical properties and alteration of the rocks, the compressional wave velocities were compared with results from major and trace elemental analyses and petrographic examination of select samples. For the Leg 129 basalts, velocity displays a generally consistent decrease with increasing K2O, H2O+, loss on ignition, and Rb contents and the value of Fe3+/FeT and decreasing concentrations of SiO2, FeOT, CaO, MgO, and MnO. These trends are consistent with trends documented for the progressive alteration of oceanic crust and indicate that on a laboratory sample scale, basalt alteration is largely responsible for the variation of the physical properties of basalts sampled at Sites 800, 801, and 802.
Resumo:
A study of samples from DSDP Leg 47 shows that transformation of organic matter in deep sea sediments is completly analogous to evolution of organic matter in sedimentary sequences on continents and depends on the same factors. Crucial among these factors are: genesis of organic matter, nature of its diagenetic changes, and current stage of catagenesis.
Resumo:
Middle Jurassic basaltic lavas obtained from Site 801 in the western Pacific Pigafetta Basin represent ocean crust from the oldest segment of the present-day Pacific Ocean. A composite 131 m section shows the basement to be composed of an upper alkalic basalt sequence (about 157 Ma) with ocean island basalt chemical features and a lower tholeiitic basalt sequence (about 167 Ma) with typical normal-type mid-ocean ridge basalt features. The basalt sequences are separated by a quartz-cemented, yellow goethite hydrothermal deposit. Most basalts are altered to some degree and exhibit variable, low-grade smectite-celadonite-pyrite-carbonate-zeolite assemblages developed under a mainly hydrated anoxic environment. Oxidation is very minor, later in development than the hydration assemblages, and largely associated with the hydrothermal deposit. The tholeiitic normal-type mid-ocean ridge basalt has characteristically depleted incompatible element patterns and all compositions are encompassed by recent mid-ocean ridge basalt from the East Pacific Rise. Chemically, the normal-type mid-ocean ridge basalt is divided into a primitive plagioclase-olivine +/- spinel phyric group (Mg* = 72-60) and an evolved (largely) aphyric group of olivine tholeiites (Mg* = 62-40). Both groups form a single comagmatic suite related via open-system fractionation of initial olivine-spinel followed by olivine-plagioclase-clinopyroxene. The alkalic ocean island basalt are largely aphyric and display enriched incompatible element abundances within both relatively primitive olivine-rich basalts and evolved olivine-poor hawaiites related via mafic fractionation. In gross terms, the basement lithostratigraphy is a typical mid-ocean ridge basalt crust, generated at a spreading center, overlain by an off-axis seamount with ocean island basalt chemical characters.
Resumo:
Data on analyses of chemical composition of DSDP samples of bottom sediments and rocks carried out in P.P. Shirshov Institute of Oceanology are reported. Basal sediments and sedimentary rocks prevail in the sample set.
Resumo:
Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.
Resumo:
1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current
Resumo:
The Mariana arc-trench system, the easternmost of a series of backarc basins and intervening remnant arcs that form the eastern edge of the Philippine Sea Plate, is a well-known example of an intraoceanic convergence zone. Its evolution has been studied by numerous investigators over nearly two decades (e.g., Kang, 1971; Uyeda and Kanamori, 1979; LaTraille and Hussong, 1980; Fryer and Hussong, 1981; Mrosowski et al., 1982; Hussong and Uyeda, 1981; Bloomer and Hawkins, 1983; Karig and Ranken, 1983; McCabe and Uyeda, 1983; Hsui and Youngquist, 1985; Fryer and Fryer, 1987; Johnson and Fryer, 1988; Johnson and Fryer, 1989; Johnson et al., 1991). The Mariana forearc has undergone extensive vertical uplift and subsidence in response to seamount collision, to tensional and rotational fracturing associated with adjustments to plate subduction, and to changes in the configuration of the arc (Hussong and Uyeda, 1981; Fryer et al., 1985). Serpentine seamounts, up to 2500 m high and 30 km in diameter, occur in a broad zone along the outer-arc high (Fryer et al., 1985; Fryer and Fryer, 1987). These seamounts may be horsts of serpentinized ultramafic rocks or may have been formed by the extrusion of serpentine muds. Conical Seamount, one of these serpentine seamounts, is located within this broad zone of forearc seamounts, about 80 km from the trench axis, at about 19°30'N. The seamount is approximately 20 km in diameter and rises 1500 m above the surrounding seafloor. Alvin submersible, R/V Sonne bottom photography, seismic reflection, and SeaMARC II studies indicate that the surface of this seamount is composed of unconsolidated serpentine muds that contain clasts of serpentinized ultramafic and metamorphosed mafic rocks, and authigenic carbonate and silicate minerals (Saboda et al., 1987; Haggerty, 1987; Fryer et al., 1990; Saboda, 1991). During Leg 125, three sites were drilled (two flank sites and one summit site) on Conical Seamount to investigate the origin and evolution of the seamount. Site 778 (19°29.93'N, 146°39.94'E) is located in the midflank region of the southern quadrant of Conical Seamount at a depth of 3913.7 meters below sea level (mbsl) (Fig. 2). This site is located in the center of a major region of serpentine flows (Fryer et al., 1985, 1990). Site 779 (19°30.75'N, 146°41.75'E), about 3.5 km northeast of Site 778, is located approximately in the midflank region of the southeast quadrant of Conical Seamount, at a depth of 3947.2 mbsl. This area is mantled by a pelagic sediment cover, overlying exposures of unconsolidated serpentine muds that contain serpentinized clasts of mafic and ultramafic rocks (Fryer et al., 1985, 1990). Site 780 (19°32.5'N, 146°39.2'E) is located on the western side of Conical Seamount near the summit, at a depth of 3083.4 mbsl. This area is only partly sediment covered and lies near active venting fields where chimney structures are forming (Fryer et al., 1990).
Resumo:
Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.
Resumo:
Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.