877 resultados para Responsibility Driven Design
Resumo:
Purpose – This paper aims to articulate strategic dilemmas faced by a Chief Executive of a highly successful company and how such dilemmas were resolved. Design/methodology/approach – The case is based on a semi-structured interview with Mr Jeremy Darroch – Chief Executive of BSkyB – and analysis of documentary evidence. Findings – It is often difficult to implement strategies that simultaneously yield high organic growth rate, innovation, and a healthy balance-sheet. The paper sheds light on how Sky has met this challenge. Research limitations/implications – The research offers a unique insight into the views of a principal strategist and articulates the background to offer context, however, because of its design the findings are not generalisable. Originality/value – Very few articles offer insight into the thinking of those with principal responsibility for design and delivery of strategy. This paper offers such an insight based on a detailed interview with a highly successful Chief Executive.
Resumo:
We argue that it is important for researchers and service providers to not only recognize the rights of children and young people with learning disabilities to have a ‘voice’, but also to work actively towards eliciting views from all. A set of guidelines for critical self-evaluation by those engaged in systematically collecting the views of children and young people with learning disabilities is proposed. The guidelines are based on a series of questions concerning: research aims and ethics (encompassing access/gatekeepers; consent/assent; confidentiality/anonymity/secrecy, recognition, feedback and ownership; and social responsibility) sampling, design and communication
Resumo:
The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.
Resumo:
This study forms part of wider research conducted under a EU 7 th Framework Programme (COmputationally Driven design of Innovative CEment-based materials or CODICE). The ultimate aim is the multi-scale modelling of the variations in mechanical performance in degraded and non-degraded cementitious matrices. The model is being experimentally validated by hydrating the main tri-calcium silicate (T1-C3S) and bi-calcium silicate (β-C2S), phases present in Portland cement and their blends. The present paper discusses micro- and nanoscale studies of the cementitious skeletons forming during the hydration of C3S, C2S and 70 % / 30 % blends of both C3S/C2S and C2S/C3S with a water/cement ratio of 0.4. The hydrated pastes were characterized at different curing ages with 29 Si NMR, SEM/TEM/EDS, BET, and nanoindentation. The findings served as a basis for the micro- and nanoscale characterization of the hydration products formed, especially C-S-H gels. Differences were identified in composition, structure and mechanical behaviour (nanoindentation), depending on whether the gels formed in C3S or C2S pastes. The C3S gels had more compact morphologies, smaller BET-N2 specific surface area and lesser porosity than the gels from C2S-rich pastes. The results of nanoindentation tests appear to indicate that the various C-S-H phases formed in hydrated C3S and C2S have the same mechanical properties as those formed in Portland cement paste. Compared to the C3S sample, the hydrated C2S specimen was dominated by the loose-packed (LP) and the low-density (LD) C-S-H phases, and had a much lower content of the high density (HD) C-S-H phase
Resumo:
The presented study is related to the EU 7 th Framework Programme CODICE (COmputationally Driven design of Innovative CEment-based materials). The main aim of the project is the development of a multi-scale model for the computer based simulation of mechanical and durability performance of cementitious materials. This paper reports results of micro/nano scale characterisation and mechanical property mapping of cementitious skeletons formed by the cement hydration at different ages. Using the statistical nanoindentation and micro-mechanical property mapping technique, intrinsic properties of different hydrate phases, and also the possible interaction (or overlapping) of different phases (e.g. calcium-silcate-hydrates) has been studied. Results of the mapping and statistical indentation testing appear to suggest the possible existence of more hydrate phases than the commonly reported LD and HD C-S-H and CH phases
Resumo:
Synthetic biology, by co-opting molecular machinery from existing organisms, can be used as a tool for building new genetic systems from scratch, for understanding natural networks through perturbation, or for hybrid circuits that piggy-back on existing cellular infrastructure. Although the toolbox for genetic circuits has greatly expanded in recent years, it is still difficult to separate the circuit function from its specific molecular implementation. In this thesis, we discuss the function-driven design of two synthetic circuit modules, and use mathematical models to understand the fundamental limits of circuit topology versus operating regimes as determined by the specific molecular implementation. First, we describe a protein concentration tracker circuit that sets the concentration of an output protein relative to the concentration of a reference protein. The functionality of this circuit relies on a single negative feedback loop that is implemented via small programmable protein scaffold domains. We build a mass-action model to understand the relevant timescales of the tracking behavior and how the input/output ratios and circuit gain might be tuned with circuit components. Second, we design an event detector circuit with permanent genetic memory that can record order and timing between two chemical events. This circuit was implemented using bacteriophage integrases that recombine specific segments of DNA in response to chemical inputs. We simulate expected population-level outcomes using a stochastic Markov-chain model, and investigate how inferences on past events can be made from differences between single-cell and population-level responses. Additionally, we present some preliminary investigations on spatial patterning using the event detector circuit as well as the design of stationary phase promoters for growth-phase dependent activation. These results advance our understanding of synthetic gene circuits, and contribute towards the use of circuit modules as building blocks for larger and more complex synthetic networks.
Resumo:
Current housing design and construction practices do not meet the needs of many people with disability and older people, and limits their inclusion and participation in community and family life. In spite of a decade of advocacy for regulation of access within residential environments, the Australian government has opted for a voluntary approach where the housing industry takes responsibility. Housing industry leaders have indicated that they are willing to transform their established practice, if it makes good business to do so, and if there is a demand from home buyers. To date, there has been minimal demand. In 2010, housing industry and community leaders formalised this commitment in an agreement, called Livable Housing Design, to transform housing design and construction practices, with a target of all new housing providing minimal access by 2020. This paper reports on a study which examined the assumption behind Livable Housing Design agreement; that is, individuals in the housing industry will respond voluntarily and take responsibility for the provision of inclusive housing. From interviews with developers, designers and builders in Brisbane, Queensland, the study found a complex picture of competing demands and responsibilities. Instead of changing their design and construction practices voluntarily to meet the future needs of users over the life of housing, they are more likely to focus on their immediate contractual obligations and to maintain the status quo. Contrary to the view of the government and industry leaders, participants identified that an external regulatory framework would be required if Livable Housing Design’s 2020 goal was to be met.
Resumo:
A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.
Resumo:
Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.
Resumo:
The research assessed how best to transition engineering-based automotive firms towards more customer-orientated design and development approaches, whilst identifying the main barriers and concerns facing such a shift. The research investigates the ability of a firm to empower individual engineers with user centred design tools traditionally used by designers, whilst understanding the company-wide needs to facilitate their implementation.
Resumo:
Online communities have fundamentally changed how humans connected and are now so common they are fundamental to the human experience. As the Internet developed for Web 1.0 to Web 2.0, the functionality of these communities has far exceeded initial expectations. These communities have shifted from simply places to share information to ways to access products and services that bridge the online and offline worlds. This shift has led to the disruption of many industries with the transportation industry being one such sector. Both private transport providers and public transport systems face competition from online communities who are able to link services providers and customers more effectively and innovatively. These types of communities fall under what has been popularised as collaborative consumption or the sharing economy. The aim of this study is to explore the role of Design-led Innovation in the creation of digital futures, specifically online connected communities for successful new mobility solutions. To explore this proposition multiple data collection methods are proposed;Content Analysis, ii) A Comparative Qualitative Study consisting of Qualitative Interviews and Focus Groups / Design Workshops and iii) An Action Research Cycle of Embedded Practice. The multidisciplinary nature of this study grounds this research in a novel position contributing to new knowledge in both the field of design, and also a deeper understanding of the larger fast-growing online community phenomena.
Resumo:
This research develops a design support system, which is able to estimate the life cycle cost of different product families at the early stage of product development. By implementing the system, a designer is able to develop various cost effective product families in a shorter lead-time and minimise the destructive impact of the product family on the environment.