889 resultados para Realized volatility
Resumo:
Much research has investigated the differences between option implied volatilities and econometric model-based forecasts. Implied volatility is a market determined forecast, in contrast to model-based forecasts that employ some degree of smoothing of past volatility to generate forecasts. Implied volatility has the potential to reflect information that a model-based forecast could not. This paper considers two issues relating to the informational content of the S&P 500 VIX implied volatility index. First, whether it subsumes information on how historical jump activity contributed to the price volatility, followed by whether the VIX reflects any incremental information pertaining to future jump activity relative to model-based forecasts. It is found that the VIX index both subsumes information relating to past jump contributions to total volatility and reflects incremental information pertaining to future jump activity. This issue has not been examined previously and expands our understanding of how option markets form their volatility forecasts.
Resumo:
We analyse the puzzling behavior of the volatility of individual stock returns around the turn of the Millennium. There has been much academic interest in this topic, but no convincing explanation has arisen. Our goal is to pull together the many competing explanations currently proposed in the literature to delermine which, if any, are capable of explaining the volatility trend. We find that many of the different explanations capture the same unusual trend around the Millennium. We find that many of the variables are very highly correlated and it is thus difficult to disentangle their relalive ability to exlplain the time-series behavior in volatility. It seems thai all of the variables that track average volatility well do so mainly by capturing changes in the post-1994 period. These variables have no time-series explanatory power in the pre-1995 years, questioning the underlying idea that any of the explanations currently plesented in the literature can track the trend in volatility over long periods.
Resumo:
No-tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil-derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer-term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20-year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.
Resumo:
We analyze the puzzling behavior of the volatility of individual stock returns over the past few decades. The literature has provided many different explanations to the trend in volatility and this paper tests the viability of the different explanations. Virtually all current theoretical arguments that are provided for the trend in the average level of volatility over time lend themselves to explanations about the difference in volatility levels between firms in the cross-section. We therefore focus separately on the cross-sectional and time-series explanatory power of the different proxies. We fail to find a proxy that is able to explain both dimensions well. In particular, we find that Cao et al. [Cao, C., Simin, T.T., Zhao, J., 2008. Can growth options explain the trend in idiosyncratic risk? Review of Financial Studies 21, 2599–2633] market-to-book ratio tracks average volatility levels well, but has no cross-sectional explanatory power. On the other hand, the low-price proxy suggested by Brandt et al. [Brandt, M.W., Brav, A., Graham, J.R., Kumar, A., 2010. The idiosyncratic volatility puzzle: time trend or speculative episodes. Review of Financial Studies 23, 863–899] has much cross-sectional explanatory power, but has virtually no time-series explanatory power. We also find that the different proxies do not explain the trend in volatility in the period prior to 1995 (R-squared of virtually zero), but explain rather well the trend in volatility at the turn of the Millennium (1995–2005).
Resumo:
Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.
Resumo:
Forecasts of volatility and correlation are important inputs into many practical financial problems. Broadly speaking, there are two ways of generating forecasts of these variables. Firstly, time-series models apply a statistical weighting scheme to historical measurements of the variable of interest. The alternative methodology extracts forecasts from the market traded value of option contracts. An efficient options market should be able to produce superior forecasts as it utilises a larger information set of not only historical information but also the market equilibrium expectation of options market participants. While much research has been conducted into the relative merits of these approaches, this thesis extends the literature along several lines through three empirical studies. Firstly, it is demonstrated that there exist statistically significant benefits to taking the volatility risk premium into account for the implied volatility for the purposes of univariate volatility forecasting. Secondly, high-frequency option implied measures are shown to lead to superior forecasts of the intraday stochastic component of intraday volatility and that these then lead on to superior forecasts of intraday total volatility. Finally, the use of realised and option implied measures of equicorrelation are shown to dominate measures based on daily returns.
Resumo:
The performance of techniques for evaluating multivariate volatility forecasts are not yet as well understood as their univariate counterparts. This paper aims to evaluate the efficacy of a range of traditional statistical-based methods for multivariate forecast evaluation together with methods based on underlying considerations of economic theory. It is found that a statistical-based method based on likelihood theory and an economic loss function based on portfolio variance are the most effective means of identifying optimal forecasts of conditional covariance matrices.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines is ultimately coupled to the structure of fuel molecules. The presence of oxygen, level of unsaturation and the carbon chain length of respective molecules influence the combustion chemistry. It is speculated that increased oxygen content in the fuel may lead to the increased oxidative potential (Stevanovic, S. 2013). Also, upon the exposure to UV and ozone in the atmosphere, the chemical composition of the exhaust is changed. The presence of an oxidant and UV is triggering the cascade of photochemical reactions as well as the partitioning of semi-volatile compounds between the gas and particle phase. To gain an insight into the relationship between the molecular structures of the esters, their volatile organic content and the potential toxicity of diesel exhaust particulate matter, measurements were conducted on a modern common rail diesel engine. This research also investigates the contribution of atmospheric conditions on the transfer of semi-volatile fraction of diesel exhaust from the gas phase to the particle phase and the extent to which semi-volatile compounds (SVOCs) are related to the oxidative potential, expressed through the concentration of reactive oxygen species (ROS) (Stevanovic, S. 2013)...
Resumo:
Objective This article explores patterns of terrorist activity over the period from 2000 through 2010 across three target countries: Indonesia, the Philippines and Thailand. Methods We use self-exciting point process models to create interpretable and replicable metrics for three key terrorism concepts: risk, resilience and volatility, as defined in the context of terrorist activity. Results Analysis of the data shows significant and important differences in the risk, volatility and resilience metrics over time across the three countries. For the three countries analysed, we show that risk varied on a scale from 0.005 to 1.61 “expected terrorist attacks per day”, volatility ranged from 0.820 to 0.994 “additional attacks caused by each attack”, and resilience, as measured by the number of days until risk subsides to a pre-attack level, ranged from 19 to 39 days. We find that of the three countries, Indonesia had the lowest average risk and volatility, and the highest level of resilience, indicative of the relatively sporadic nature of terrorist activity in Indonesia. The high terrorism risk and low resilience in the Philippines was a function of the more intense, less clustered pattern of terrorism than what was evident in Indonesia. Conclusions Mathematical models hold great promise for creating replicable, reliable and interpretable “metrics” to key terrorism concepts such as risk, resilience and volatility.
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
Techniques for evaluating and selecting multivariate volatility forecasts are not yet understood as well as their univariate counterparts. This paper considers the ability of different loss functions to discriminate between a set of competing forecasting models which are subsequently applied in a portfolio allocation context. It is found that a likelihood-based loss function outperforms its competitors, including those based on the given portfolio application. This result indicates that considering the particular application of forecasts is not necessarily the most effective basis on which to select models.