908 resultados para Real systems
Resumo:
Bayesian networks are powerful tools as they represent probability distributions as graphs. They work with uncertainties of real systems. Since last decade there is a special interest in learning network structures from data. However learning the best network structure is a NP-Hard problem, so many heuristics algorithms to generate network structures from data were created. Many of these algorithms use score metrics to generate the network model. This thesis compare three of most used score metrics. The K-2 algorithm and two pattern benchmarks, ASIA and ALARM, were used to carry out the comparison. Results show that score metrics with hyperparameters that strength the tendency to select simpler network structures are better than score metrics with weaker tendency to select simpler network structures for both metrics (Heckerman-Geiger and modified MDL). Heckerman-Geiger Bayesian score metric works better than MDL with large datasets and MDL works better than Heckerman-Geiger with small datasets. The modified MDL gives similar results to Heckerman-Geiger for large datasets and close results to MDL for small datasets with stronger tendency to select simpler network structures
Resumo:
Feasibility of nonlinear and adaptive control methodologies in multivariable linear time-invariant systems with state-space realization (A, B, C) is apparently limited by the standard strictly positive realness conditions that imply that the product CB must be positive definite symmetric. This paper expands the applicability of the strictly positive realness conditions used for the proofs of stability of adaptive control or control with uncertainty by showing that the not necessarily symmetric CB is only required to have a diagonal Jordan form and positive eigenvalues. The paper also shows that under the new condition any minimum-phase systems can be made strictly positive real via constant output feedback. The paper illustrates the usefulness of these extended properties with an adaptive control example. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Currently the interest in large-scale systems with a high degree of complexity has been much discussed in the scientific community in various areas of knowledge. As an example, the Internet, protein interaction, collaboration of film actors, among others. To better understand the behavior of interconnected systems, several models in the area of complex networks have been proposed. Barabási and Albert proposed a model in which the connection between the constituents of the system could dynamically and which favors older sites, reproducing a characteristic behavior in some real systems: connectivity distribution of scale invariant. However, this model neglects two factors, among others, observed in real systems: homophily and metrics. Given the importance of these two terms in the global behavior of networks, we propose in this dissertation study a dynamic model of preferential binding to three essential factors that are responsible for competition for links: (i) connectivity (the more connected sites are privileged in the choice of links) (ii) homophily (similar connections between sites are more attractive), (iii) metric (the link is favored by the proximity of the sites). Within this proposal, we analyze the behavior of the distribution of connectivity and dynamic evolution of the network are affected by the metric by A parameter that controls the importance of distance in the preferential binding) and homophily by (characteristic intrinsic site). We realized that the increased importance as the distance in the preferred connection, the connections between sites and become local connectivity distribution is characterized by a typical range. In parallel, we adjust the curves of connectivity distribution, for different values of A, the equation P(k) = P0e
Resumo:
This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.
Resumo:
Trying to reduce particle contamination in lubrication systems, industries of the whole world spend millions of dollars each year on the improvement of filtration technology. In this context, by controlling fluid cleanliness, some companies are able to reduce failures rates up to 85 percent. However, in some industries and environments, water is a contaminant more frequently encountered than solid particles, and it is often seen as the primary cause of component failure. Only one percent of water in oil is enough to reduce life expectancy of a journal bearing by 80 percent. For rolling bearing elements, the situation is worse because water destroys the oil film and, under the extreme temperatures and pressures generated in the load zone of a rolling bearing element, free and emulsified water can result in instantaneous flash-vaporization giving origin to erosive wear. This work studies the effect of water as lubricant contaminant in ball bearings, which simulates a situation that could actually occur in real systems. In a designed bench test, three basic lubricants of different viscosities were contaminated with different contents of water. The results regarding oil and vibration analysis are presented for different bearing speeds.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
This paper presents efficient geometric parameterization techniques using the tangent and the trivial predictors for the continuation power flow, developed from observation of the trajectories of the load flow solution. The parameterization technique eliminates the Jacobian matrix singularity of load flow, and therefore all the consequent problems of ill-conditioning, by the addition of the line equations which pass through the points in the plane determined by the variables loading factor and the real power generated by the slack bus, two parameters with clear physical meaning. This paper also provides an automatic step size control around the maximum loading point. Thus, the resulting method enables not only the calculation of the maximum loading point, but also the complete tracing of P-V curves of electric power systems. The technique combines robustness with ease of understanding. The results to the IEEE 300-bus system and of large real systems show the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
This study presents a new methodology based on risk/investment to solve transmission network expansion planning (TNEP) problem with multiple future scenarios. Three mathematical models related to TNEP problems considering multiple future generation and load scenarios are also presented. These models will provide planners with a meaningful risk assessment that enable them to determine the necessary funding for transmission lines at a permissible risk level. The results using test and real systems show that the proposed method presents better solutions compared with scenario analysis method. ©The Institution of Engineering and Technology 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)