985 resultados para Reactive species


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: In this study we have assessed the renal and cardiac consequences of ligature-induced periodontitis in both normotensive and nitric oxide (NO)-deficient (L-NAME-treated) hypertensive rats. Materials and methods: Oral L-NAME (or water) treatment was started two weeks prior to induction of periodontitis. Rats were sacrificed 3, 7 or 14 days after ligature placement, and alveolar bone loss was evaluated radiographically. Thiobarbituric reactive species (TBARS; a lipid peroxidation index), protein nitrotyrosine (NT; a marker of protein nitration) and myeloperoxidase activity (MPO; a neutrophil marker) were determined in the heart and kidney. Results: In NO-deficient hypertensive rats, periodontitis-induced alveolar bone loss was significantly diminished. In addition, periodontitis-induced cardiac NT elevation was completely prevented by L-NAME treatment. On the other hand L-NAME treatment enhanced MPO production in both heart and kidneys of rats with periodontitis. No changes due to periodontitis were observed in cardiac or renal TBARS content. Conclusions: In addition to mediating alveolar bone loss, NO contributes to systemic effects of periodontitis in the heart and kidney. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ruthenium compound [Ru(2)Cl(Ibp)(4)] (or RuIbp) has been reported to cause significantly greater inhibition of C6 glioma cell proliferation than the parent HIbp. The present study determined the effects of 0-72 h exposure to RuIbp upon C6 cell cycle distribution, mitochondrial membrane potential, reactive species generation and mRNA and protein expression of E2F1, cyclin D1, c-myc, pRb, p21, p27, p53, Ku70, Ku80, Bax, Bcl2, cyclooxygenase 1 and 2 (COX1 and COX2). The most significant changes in mRNA and protein expression were seen for the cyclin-dependent kinase inhibitors p21 and p27 which were both increased (p<0.05). The marked decrease in mitochondrial membrane potential (p<0.01) and modest increase in apoptosis was accompanied by a decrease in anti-apoptotic Bcl2 expression and an increase in pro-apoptotic Bax expression (p<0.05). Interestingly, COX1 expression was increased in response to a significant loss of prostaglandin E(2) production (p<0.001), most likely due to the intracellular action of Ibp. Future studies will investigate the efficacy of this novel ruthenium-ibuprofen complex in human glioma cell lines in vitro and both rat and human glioma cells growing under orthotopic conditions in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes. We genotyped 200 healthy subjects (males, 18-60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes. Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05). These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In spite of the many studies on protein modifications by reactive species, knowledge about the products resulting from the oxidation of protein-aromatic residues, including protein-derived radicals and their stable products, remains limited. Here, we compared the oxidative modifications promoted by peroxynitrite and myeloperoxidase/hydrogen peroxide/nitrite in two model proteins, ribonuclease (6Tyr) and lysozyme (3Tyr/6Trp). The formation of protein-derived radicals and products was higher at pH 5.4 and 7.4 for myeloperoxidase and peroxynitrite, respectively. The main product was 3-nitro-Tyr for both proteins and oxidants. Lysozyme rendered similar yields of nitro-Trp, particularly when oxidized by peroxynitrite. Hydroxylated and dimerized products of Trp and Tyr were also produced, but in lower yields. Localization of the main modified residues indicates that peroxynitrite decomposes to radicals within the proteins behaving less specifically than myeloperoxidase. Nitrogen dioxide is emphasized as an important protein modifier. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas` heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cholesterol oxidation gives rise to a mixture of oxidized products. Different types of products are generated according to the reactive species being involved. Recently, attention has been focused on two cholesterol aldehydes, 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxyaldehyde (1a) and 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al (1b). These aldehydes can be generated by ozone-, as well as by singlet molecular oxygen-mediated cholesterol oxidation. It has been suggested that 1b is preferentially formed by ozone and la is preferentially formed by singlet molecular oxygen. In this study we describe the use of 1-pyrenebutyric hydrazine (PBH) as a fluorescent probe for the detection of cholesterol aldehydes. The formation of the fluorescent adduct between la with PBH was confirmed by HPLC-MS/MS. The fluorescence spectra of PBH did not change upon binding to the aldehyde. Moreover, the derivatization was also effective in the absence of an acidified medium, which is critical to avoid the formation of cholesterol aldehydes through Hock cleavage of 5 alpha-hydroperoxycholesterol. In conclusion, PBH can be used as an efficient fluorescent probe for the detection/quantification of cholesterol aldehydes in biological samples. Its analysis by HPLC coupled to a fluorescent detector provides a sensitive and specific way to quantify cholesterol aldehydes in the low femtomol range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its proapoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)(2)](2+) 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-D-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: A prática de exercício físico proporciona aumento da produção de espécies reativas de oxigênio (ERO) resultantes do metabolismo aeróbio e, gera uma quantidade significativa de calor, em conseqüência da produção de energia, resultando em sobrecarga orgânica. A associação entre ERO e exercício, e entre exercício e variações da temperatura ambiente têm sido estudadas, contudo, há escassez de informações que considere a associação entre produção de radicais livres no miocárdio e atividade física em temperatura elevada. OBJETIVO: Comparar a produção de ERO em miocárdio de ratos submetidos ao treinamento de baixa intensidade em diferentes temperaturas. MÉTODOS: Foram utilizados 20 ratos Wistar, machos, jovens, peso (250 a 280g), divididos em quatro grupos: G1 (n = 5) expostos ao treinamento e calor (39º ± 1C); G2 (n = 5) expostos somente ao calor durante o mesmo período de G1, sem treinamento; G3 (n = 5) expostos ao treinamento em temperatura ambiente (22º ± 1C); G4 (n = 5) expostos à temperatura ambiente sem treinamento. O treinamento foi realizado em esteira rolante climatizada por cinco semanas, evoluindo 5 minutos a cada duas sessões finalizando em 60 minutos em baixa intensidade 8m/min. O ambiente foi controlado entre 39 ± 1ºC e 22 ± 1ºC e entre 40 e 60 % de umidade relativa. A lipoperoxidação foi avaliada por Quimiluminescência (QL). A análise dos dados foi realizada a partir do teste Two Way ANOVA para análise da QL e t de student para a Capacidade Antioxidante Total (TRAP). RESULTADOS: A análise da QL revelou uma curva de emissão de luz significantemente mais baixa para o grupo exposto ao exercício em normotermia comparado aos sedentários mantidos no calor. A análise da TRAP mostrou diminuição em todos os grupos experimentais em relação ao G4. CONCLUSÃO: Concluiu-se que houve níveis menores de produção de ERO nos grupos submetidos somente ao calor ou somente ao exercício.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)