977 resultados para Rabies virus -- Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amostras de vírus rábico isoladas de animais e humanos no período de 1989 a 2000 foram tipificadas antigenicamente com a utilização de um painel de anticorpos monoclonais contra a nucleoproteína viral, pré-estabelecido para o estudo da epidemiologia molecular do vírus rábico isolado nas Américas. As amostras testadas foram isoladas no laboratório de diagnóstico do Instituto Pasteur e outros centros de diagnóstico de raiva no Brasil. Além das cepas de vírus rábico fixo CVS-31/96-IP, mantida em cérebro de camundongos e a PV-BHK/97, mantida em cultura de células, cepas de vírus rábico isoladas de cães, gatos, bovinos, eqüinos, morcegos, ovinos, caprino, suínos, raposa, sagüí, coatí, guaxinim e humanos, totalizaram 330 amostras. Seis variantes antigênicas foram definidas, compatíveis com perfís observados no painel de anticorpos monoclonais pré-estabelecido utilizado, as de número 2 (cão), 3 (Desmodus rotundus), 4 (Tadarida brasiliensis), 5 (Vampiro da Venezuela), 6 (Lasiurus cinereus) e Lab (reagente a todos os anticorpos utilizados), além de outros seis perfís desconhecidos, não compatíveis com aqueles observados no painel utilizado. A maior variabilidade foi observada entre as amostras isoladas de morcegos insetívoros e a variante mais comum isolada entre as espécies foi a variante 3 (Desmodus rotundus). Estes fatos podem representar a existência de múltiplos ciclos de transmissão independentes, envolvendo diferentes espécies de morcegos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic and phylogenetic analyses of the region containing the glycoprotein (G) gene, which is related to pathogenicity and antigenicity, and the G-L intergenic region were carried out in 14 Brazilian rabies virus isolates. The isolates were classified as dog-related rabies virus (DRRV) or vampire bat-related rabies virus (VRRV), by nucleoprotein (N) analysis. The nucleotide and amino acid (AA) homologies of the area containing the G protein gene and G-L intergenic region were generally lower than those of the ectodomain. In both regions, nucleotide and deduced AA homologies were lower among VRRVs than among DRRVs. There were AA differences between DRRV and VRRV at 3 antigenic sites and epitopes (IIa, WB+ and III), suggesting that DRRV and VRRV can be distinguished by differences of antigenicity. In a comparison of phylogenetic trees between the ectodomain and the area containing the G protein gene and G-L intergenic region, the branching patterns of the chiropteran and carnivoran rabies virus groups differed, whereas there were clear similarities in patterns within the DRRV and VRRV groups. Additionally, the VRRV isolates were more closely related to chiropteran strains isolated from Latin America than to Brazilian DRRV. These results indicate that Brazilian rabies virus isolates can be classified as DRRV or VRRV by analysis of the G gene and the G-L intergenic region, as well as by N gene analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low rates of nonsynonymous evolution observed in natural rabies virus (RABV) isolates are suggested to have arisen in association with the structural and functional constraints operating on the virus protein and the infection strategies employed by RABV within infected hosts to avoid strong selection by the immune response. In order to investigate the relationship between the genetic characteristics of RABV populations within hosts and the virus evolution, the present study examined the genetic heterogeneities of RABV populations within naturally infected dogs and foxes in Brazil, as well as those of bat RABV populations that were passaged once in suckling mice. Sequence analyses of complete RABV glycoprotein (G) genes showed that RABV populations within infected hosts were genetically highly homogeneous whether they were infected naturally or experimentally (nucleotide diversities of 0-0.95 x 10(-3)). In addition, amino acid mutations were randomly distributed over the entire region of the G protein, and the nonsynonymous/synonymous rate ratios (d(N)/d(S)) for the G protein gene were less than 1. These findings suggest that the low genetic diversities of RABV populations within hosts reflect the stabilizing selection operating on the virus, the infection strategies of the virus, and eventually, the evolutionary patterns of the virus. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The use of methods, both sensitive and specific, for rabies diagnosis are important tools for the control and prophylaxis of the disease. Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) has been used in rabies diagnosis with good results, even in decomposed materials. Additionally, molecular techniques have been used for epidemiological studies and to gain a better knowledge of viral epidemiology. Findings. The aim of this work was to evaluate the RT-PCR and hnRT-PCR for rabies virus detection in original tissues stored at -20°C for different periods considering their use for rabies virus detection in stored and decomposed samples. RT-PCR and hnRT-PCR were evaluated in 151 brain samples from different animal species, thawed and left at room temperature for 72 hours for decomposition. The RT-PCR and hnRT-PCR results were compared with previous results from Direct Fluorescent Antibody Test and Mouse Inoculation Test. From the 50 positive fresh samples, 26 (52%) were positive for RT-PCR and 45 (90%) for hnRT-PCR. From the 48 positive decomposed samples, 17 (34, 3%) were positive for RT-PCR and 36 (75%) for hnRT-PCR. No false-positives results were found in the negatives samples evaluated to the molecular techniques. Conclusion. These results show that the hnRT-PCR was more sensitive than RT-PCR, and both techniques presented lower sensibility in decomposed samples. The hnRT-PCR demonstrated efficacy in rabies virus detection in stored and decomposed materials suggesting it's application for rabies virus retrospective epidemiological studies. © 2008 Arajo et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings. The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions. This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations. © 2010 Itou et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To assess the expression of rabies virus G-glycoprotein (RVGP) expression using Semliki Forest virus as a vector in combination with BHK-21 cells cultured in suspension. Results A multilevel factorial design was used to quantify effects of temperature (33–37 C), fresh medium addition after the viral adsorption step (100–200 % with respect to the initial cell suspension volume before infection) and harvest time (8–40 h) on RVGP production. Experimental runs were performed in 24-well cell culture plates at a multiplicity of infection (MOI) of 16. An additional experiment in spinner-flask was performed at MOI of 9, using the optimal conditions determined in cell culture plates. Values for temperature, fresh medium addition and harvest time of 33 C, 100 % and 16 h, respectively, ensured the optimal RVGP production in culture plates. The volumetric yield (239 ng ml-1 ) in these conditions was higher than that reported previously for adherent cell culture. In spinner-flasks, the volumetric yield was improved (559 ng ml-1 ). Conclusion These results establish the basis for designing bioprocess to produce RVGP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV) strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources. (C) 2012 Elsevier Editora Ltda. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV) strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado à 23ª Revista de Educação Continuada em Medicina Veterinária e Zootecnia, 2012, São Paulo