990 resultados para RENORMALIZATION-GROUP
Resumo:
With nine examples, we seek to illustrate the utility of the Renormalization Group approach as a unification of other asymptotic and perturbation methods.
Resumo:
It is well known that an integrable (in the sense of Arnold-Jost) Hamiltonian system gives rise to quasi-periodic motion with trajectories running on invariant tori. These tori foliate the whole phase space. If we perturb an integrable system, the Kolmogorow-Arnold-Moser (KAM) theorem states that, provided some non-degeneracy condition and that the perturbation is sufficiently small, most of the invariant tori carrying quasi-periodic motion persist, getting only slightly deformed. The measure of the persisting invariant tori is large together with the inverse of the size of the perturbation. In the first part of the thesis we shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non analytic perturbation (the latter will only be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which theperturbations are analytic approximations of the original one. We will finally show that the approximate solutions will converge to a differentiable solution of our original problem. In the second part we will use an RG scheme using continuous scales, so that instead of solving an iterative equation as in the classical RG KAM, we will end up solving a partial differential equation. This will allow us to reduce the complications of treating a sequence of iterative equations to the use of the Banach fixed point theorem in a suitable Banach space.
Resumo:
The subtracted kernel approach is shown to be a powerful method to be implemented recursively in scattering equations with regular plus point-like interactions. The advantages of the method allows one to recursively renormalize the potentials, with higher derivatives of the Dirac-delta, improving previous results. The applicability of the method is verified in the calculation of the 1 So nucleon-nucleon phase-shifts, when considering a potential with one-pion-exchange plus a contact interaction and its derivatives. The S-1(0) renormalization parameters are fitted to the data. The method can in principle be extended to any derivative order of the contact interaction, to higher partial waves and to coupled channels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). They express the renormalization group invariance of quantum mechanics. The present approach for the renormalization scheme relies on a subtracted T-matrix equation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
The importance and usefulness of renormalization are emphasized in non-relativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultraviolet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behaviour and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent with each other. The useful role of the renormalization group equations for this problem is also pointed out.
Resumo:
A renormalization scheme for the nucleon-nucleon (NN) interaction based on a subtracted T-matrix equation is proposed and applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. With only one scaling parameter (μ), the results show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. The agreement is qualitative in the 1 S0 channel. Between the low-energy NN observables we have examined, the mixing parameter of the 3S1-3D1 states is the most sensitive to the scale. The scheme is renormalization group invariant for μ → ∞. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In questa tesi il Gruppo di Rinormalizzazione non-perturbativo (FRG) viene applicato ad una particolare classe di modelli rilevanti in Gravit`a quantistica, conosciuti come Tensorial Group Field Theories (TGFT). Le TGFT sono teorie di campo quantistiche definite sulla variet`a di un gruppo G. In ogni dimensione esse possono essere espanse in grafici di Feynman duali a com- plessi simpliciali casuali e sono caratterizzate da interazioni che implementano una non-localit`a combinatoriale. Le TGFT aspirano a generare uno spaziotempo in un contesto background independent e precisamente ad ottenere una descrizione con- tinua della sua geometria attraverso meccanismi fisici come le transizioni di fase. Tra i metodi che meglio affrontano il problema di estrarre le transizioni di fase e un associato limite del continuo, uno dei pi` u efficaci `e il Gruppo di Rinormalizzazione non-perturbativo. In questo elaborato ci concentriamo su TGFT definite sulla variet`a di un gruppo non-compatto (G = R) e studiamo il loro flusso di Rinormalizzazione. Identifichiamo con successo punti fissi del flusso di tipo IR, e una superficie critica che suggerisce la presenza di transizioni di fase in regime Infrarosso. Ci`o spinge ad uno stu- dio per approfondire la comprensione di queste transizioni di fase e della fisica continua che vi `e associata. Affrontiamo inoltre il problema delle divergenze Infrarosse, tramite un processo di regolarizzazione che definisce il limite termodinamico appropriato per le TGFT. Infine, applichiamo i metodi precedentementi sviluppati ad un modello dotato di proiezione sull’insieme dei campi gauge invarianti. L’analisi, simile a quella applicata al modello precedente, conduce nuovamente all’identificazione di punti fissi (sia IR che UV) e di una superficie critica. La presenza di transizioni di fasi `e, dunque, evidente ancora una volta ed `e possibile confrontare il risultato col modello senza proiezione sulla dinamica gauge invariante.
Resumo:
The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.
Resumo:
Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
A coarse-grained stochastic hydrodynamical description of velocity and concentration fluctuations in steadily sedimenting suspensions is constructed and analyzed using self-consistent and renormalization-group methods. We find a nonequilibrium phase transition from an "unscreened" phase in which we recover the Caflisch-Luke [Phys. Fluids 28, 759 (1985)] divergence of the velocity variance to a "screened" phase where the fluctuations have a finite correlation length depending on the volume fraction phi as phi(-1/3), in agreement with Segre et al. [Phys. Rev. Lett. 79, 2574 (1997)] (if their observation of a phi-independent diffusivity is used), and the velocity variance is independent of system size.
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.