979 resultados para Quantum harmonic oscillator
Resumo:
Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional multichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a low-frequency noise-power spectrum proportional to -ln(Ω)/Ω, and (ii) a dispersive capacitative impedance proportional to tanh(√iΩ )/ √iΩ. A deep connection to the quantum Brownian motion with linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical terms.
Resumo:
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.
Resumo:
Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK.
Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies.
In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al.. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1.09 +/- 0.06 times the quantum zero-point motion.
In the second experiment, we measure the spectral noise of the microwave cavity in the presence of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance of 0.80 +/- 0.03 times the zero-point level. These measurements provide the first evidence of quantum squeezing of motion in a mechanical resonator.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
Resumo:
The laterally confining potential of quantum dots (QDs) fabricated in semiconductor heterostructures is approximated by an elliptical two-dimensional harmonic-oscillator well or a bowl-like circular well. The energy spectrum of two interacting electrons in these potentials is calculated in the effective-mass approximation as a function of dot size and characteristic frequency of the confining potential by the exact diagonalization method. Energy level crossover is displayed according to the ratio of the characteristic frequencies of the elliptical confinement potential along the y axis and that along the x axis. Investigating the rovibrational spectrum with pair-correlation function and conditional probability distribution, we could see the violation of circular symmetry. However, there are still some symmetries left in the elliptical QDs. When the QDs are confined by a "bowl-like" potential, the removal of the degeneracy in the energy levels of QDs is found. The distribution of energy levels is different for the different heights of the barriers. (C) 2003 American Institute of Physics.
Resumo:
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.
Resumo:
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We consider the problem of a harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution. (c) 2005 Published by Elsevier B.V.
Resumo:
We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.
Resumo:
Some postulates are introduced to go from the classical Hamilton-Jacobi theory to the quantum one. We develop two approaches in order to calculate propagators, establishing the connection between them and showing the equivalence of this picture with more known ones such as the Schrödinger's and the Feynman's formalisms. Applications of the above-mentioned approaches to both the standard case of the harmonic oscillator and to the harmonic oscillator with time-dependent parameters are made. © 1991 Plenum Publishing Corporation.
Resumo:
The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.