878 resultados para Prediction by neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel interpretation and usage of Neural Network (NN) in modeling physiological signals, which are allowed to be nonlinear and/or nonstationary. The method consists of training a NN for the k-step prediction of a physiological signal, and then examining the connection-weight-space (CWS) of the NN to extract information about the signal generator mechanism. We de. ne a novel feature, Normalized Vector Separation (gamma(ij)), to measure the separation of two arbitrary states i and j in the CWS and use it to track the state changes of the generating system. The performance of the method is examined via synthetic signals and clinical EEG. Synthetic data indicates that gamma(ij) can track the system down to a SNR of 3.5 dB. Clinical data obtained from three patients undergoing carotid endarterectomy of the brain showed that EEG could be modeled (within a root-means-squared-error of 0.01) by the proposed method, and the blood perfusion state of the brain could be monitored via gamma(ij), with small NNs having no more than 21 connection weight altogether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we discuss the problem of combining spatially-distributed predictions from neural networks. An example of this problem is the prediction of a wind vector-field from remote-sensing data by combining bottom-up predictions (wind vector predictions on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task can be achieved using the scaled-likelihood method, which has been used by Morgan and Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important task for a direct mailing company is to detect potential customers in order to avoid unnecessary and unwanted mailing. This paper describes a non-linear method to predict profiles of potential customers using dARTMAP, ARTMAP-IC, and Fuzzy ARTMAP neural networks. The paper discusses advantages of the proposed approaches over similar techniques based on MLP neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems are now widely used in e-commerce applications to assist customers to find relevant products from the many that are frequently available. Collaborative filtering (CF) is a key component of many of these systems, in which recommendations are made to users based on the opinions of similar users in a system. This paper presents a model-based approach to CF by using supervised ARTMAP neural networks (NN). This approach deploys formation of reference vectors, which makes a CF recommendation system able to classify user profile patterns into classes of similar profiles. Empirical results reported show that the proposed approach performs better than similar CF systems based on unsupervised ART2 NN or neighbourhood-based algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representation of neural networks by dynamical systems is considered. The method of training of neural networks with the help of the theory of optimal control is offered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article attempts to answer the question whether or not the latest bankruptcy prediction techniques are more reliable than traditional mathematical–statistical ones in Hungary. Simulation experiments carried out on the database of the first Hungarian bankruptcy prediction model clearly prove that bankruptcy models built using artificial neural networks have higher classification accuracy than models created in the 1990s based on discriminant analysis and logistic regression analysis. The article presents the main results, analyses the reasons for the differences and presents constructive proposals concerning the further development of Hungarian bankruptcy prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las dificultades a las que los estudiantes se enfrentan y su lucha por dominar los temas, podría aumentar como consecuencia de la inadecuada utilización de materiales de evaluación. Generalmente se encuentran en el aula alumnos que hacen buen uso del material de los cursos y de una manera rápida, mientras que otros presentan dificultades con el aprendizaje del material. Esta situación es fácilmente visto en los resultados de los exámenes, un grupo de estudiantes podrían obtener buenas calificaciones animándoles, mientras que otros obtendrían la mala percepción de que los temas son difíciles, y en algunos casos, obligándolos a abandonar el curso o en otros casos a cambiar de carrera. Creemos que mediante el uso de técnicas de aprendizaje automático, y en nuestro caso la utilización de redes neuronales, sería factible crear un entorno de evaluación que podrían ajustarse a las necesidades de cada estudiante. Esto último disminuiría la sensación de insatisfacción de los alumnos y el abandono de los cursos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Eletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.