883 resultados para Pre-clinical tests
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objetivo : Descrever um novo sinal clínico associado à síndrome de negligência unilateral (SNU) em pacientes com acidente vascular cerebral isquêmico (AVCi). Método : Em 150 pacientes com acidente vascular cerebral isquêmico, foram realizadas tomografias de crânio e aplicada a National Institute of Health Stroke Scale. Aqueles pacientes com lesões vasculares à direita, hemiplegia esquerda e perna direita persistentemente cruzada sobre a esquerda, foram submetidos a testes específicos para SNU. Trinta pacientes também com lesões vasculares à direita, hemiplegia esquerda, porém sem evidências de permanecerem com as pernas cruzadas, foram submetidos aos mesmos testes clínicos. Resultados : Entre 150 pacientes com AVCi, 9 apresentaram lesão vascular cerebral à direita, hemiplegia esquerda e tendência em permanecer com a perna direita cruzada sobre a esquerda. Em 8 deles, testes específicos realizados nos primeiros dias de internação, confirmaram SNU à esquerda. Um paciente morreu antes que os testes pudessem ser aplicados. Dos 30 pacientes que não cruzaram as pernas, os testes foram normais em 20. Dez pacientes apresentaram alterações mínimas, insuficientes para o diagnóstico de SNU. Conclusão : A perna direita cruzada sobre a esquerda pode representar um novo sinal semiológico associado à hemiplegia esquerda e SNU à esquerda.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
The following study analyzed the attitudes held by pre-clinical medical students about the Medical College Admission Test or MCAT. One hundred and eighty first-year and second-year medical students at a public Midwestern medical university participated in this study. Participants completed the “Medical Students Attitudes toward the Medical College Admission Test” survey during their morning lectures near the end of their spring semester. A composite scale score of the Likert items of the survey was computed and the proportion of students with attitudes ranging from strongly agree to strongly disagree was calculated. For six of the twelve Likert items the largest proportion of participants disagreed with the statements about the MCAT and its use in the admission process and its applicability to their current medical education. Other questions included how participants prepared for the MCAT and if they completed each of the subsections were addressed as well. Future research could determine if attitudes between students accepted into medical school and those not accepted are drastically different. Advisor: Kurt F. Geisinger
Resumo:
Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
Liposoluble vitamin C derivatives, such as tetra-isopalmitoyl ascorbic acid (IPAA), are often used in dermocosmetic products due to their higher stability than vitamin C free form as well as its proposed effects in skin; however, there are no studies analyzing IPAA stability or its in vivo effects when present in dermocosmetic formulations. Thus, this study aimed to evaluate chemical stability and pre-clinical and clinical efficacy of dermocosmetic formulations containing IPAA in skin hydration and microrelief. Chemical stability of the formulations added with 1% IPAA was evaluated by heat stress during 35 days by HPLC. For pre-clinical evaluation, experimental formulations were topically applied on hairless skin mice during 5 days and animal skins were analyzed by non-invasive biophysic techniques (water content of stratum corneum, TEWL, viscoelasticity, and microrelief) and by histopathological studies. For clinical efficacy tests, the formulations were topically applied to the forearm and face of human volunteers, and 3 h and 15 days after applications, the skins were evaluated by the same non-invasive techniques mentioned before. Results showed that formulations containing IPAA had medium stability and had pronounced moisturizing effects on stratum corneum and on viable epidermis. These formulations also improved skin microrelief especially in relation to skin smoothness and roughness. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Interest in the proper neuropathological and molecular characterization of bovine spongiform encephalopathy (BSE) has increased since asymptomatic and atypical cases were detected in the cattle population by active disease surveillance. In this respect we investigated a total of 95 confirmed BSE cases originating from different active and passive surveillance categories (clinical suspects, emergency-slaughter, fallen stock and routinely slaughter) in Switzerland for their neuropathological and molecular phenotype. We looked for measurable differences between these categories in lesion profile, severity of spongiform change, degree of astrocytosis as well as immunohistochemical and molecular patterns of the disease-associated isoform of the prion protein (PrPd) in the caudal brainstem. Our results indicate significantly higher intensities of spongiform change in clinically affected compared to asymptomatic BSE cases. Similar effects were in trend observed for the intensities of PrPd deposition and astrocytosis, whereas the frequencies of morphological PrPd types and the molecular patterns in Western immunoblot were not different. Importantly, none of the animals included in this study revealed features of atypical BSE. Taken together, this study suggests that both clinically affected as well as asymptomatic Swiss BSE cases in cattle share the neuropathological and molecular phenotype of classical BSE and that asymptomatic classical BSE cases are at a pre-clinical stage of the disease rather than representing a true sub-clinical form of BSE.
Resumo:
Screening for malignant disease aims to reduce the population risk of impaired health due to the tumor in question. Screening does not only entail testing but covers all steps required to achieve the intended reduction in risk, from the appropriate information of the population to a suitable therapy. Screening tests are performed in individuals free or unaware of any symptoms associated with the tumor. An essential condition is a recognizable pathological abnormality, which occurs without symptoms and represents a pre-clinical, early stage of the tumor. Overdiagnosis and overtreatment have only recently been recognized as important problems of screening for malignant disease. Overdiagnosis is defined as a screening-detected tumor that would never have led to symptoms. In prostate-specific antigen (PSA) screening for prostate cancer 50 % - 70 % of screening-detected cancers represent such overdiagnoses. Similarly, in the case of mammography screening 20 % - 30 % of screening-detected breast cancers are overdiagnoses. The evaluation of screening interventions is often affected by biases such as healthy screenee effects or length and lead time bias. Randomized controlled trials are therefore needed to examine the efficacy and effectiveness of screening interventions and to define the rate of adverse outcomes such as unnecessary diagnostic evaluations, overdiagnosis and overtreatment. Unfortunately there is no independent Swiss body comparable to the National Screening Committee in the United Kingdom or the United States Preventive Services Task Force, which examines screening tests and programs and develops recommendations. Clearly defined goals, a central organization responsible for inviting eligible individuals, documentation and quality assurance and balanced information of the public are important attributes of successful screening programs. In Switzerland the establishment of such programs is hampered by the highly fragmented, Federal health system which allows patients to access specialists directly.
Resumo:
Epidermal growth factor receptor (EGFR) is a cell membrane tyrosine kinase receptor and plays a pivotal role in regulating cell growth, differentiation, cell cycle, and tumorigenesis. Deregulation of EGFR causes many diseases including cancers. Intensive investigation of EGFR alteration in human cancers has led to profound progress in developing drugs to target EGFR-mediated cancers. While exploring possible synergistic enhancement of therapeutic efficacy by combining EGFR tyrosine kinase inhibitors (TKI) with other anti-cancer agents, we observed that suberoylanilide hydroxamic acid (SAHA, a deacetylase inhibitor) enhanced TKI-induced cancer cell death, which further led us to question whether SAHA-mediated sensitization to TKI was associated with EGFR acetylation. What we know so far is that SAHA can inhibit class I and II histone deacetylases (HDACs), which could possibly preserve acetylation of underlying HDAC-targeted proteins including both histone and non-histone proteins. In addition, it has been reported that an HDAC inhibitor, TSA, enhanced EGFR phosphorylation in ovarian cancer cells. EGFR acetylation has also been reported to play a role in the regulation of EGFR endocytosis recently. These observations indicate that there might be an intrinsic correlation between acetylation and phosphorylation of EGFR. In other words, the interplay between EGFR acetylation and phosphorylation may contribute to HDAC inhibitors (HDACi)-augmented EGFR phosphorylation. In this investigation, we showed that CBP acetyltransferase acetylated EGFR in vivo. In response to EGF stimulation, CBP rapidly translocated from the nucleus to the cytoplasm. We also demonstrated protein-protein interaction between CBP and EGFR as well as the enhancement of EGFR acetylation by CBP. Moreover, EGFR acetylation enhanced EGFR tyrosine phosphorylation and augmented its association with Src kinase. Acetylation-deficient EGFR mutant (EGFR-K3R) significantly reduced the function and activity of EGFR. Furthermore, ectopic expression of EGFR-K3R mutant abrogated its ability to respond to EGF-induced cell proliferation, DNA synthesis, and anchorage-independent growth using cell-based assays and tumor growth in nude mice. In addition, we demonstrated that EGFR expression was associated with SAHA resistance in the treatment of cancer cells that overexpress EGFR. The knockdown of EGFR in MDA-MB-468 breast cancer cells could sensitize the cells to respond to SAHA. The overexpression of EGFR in SAHA-sensitive MDA-MB-453 breast cancer cells rendered the cells resistant to SAHA. Together, these findings suggest that EGFR plays an important role in SAHA resistance in breast carcinoma cells that we tested. The combination therapy of HDACi with TKI has been proposed for treating cancers with aberrant expression of EGFR. The evidence from pre-clinical or clinical trials demonstrated significant enhancement of therapeutic efficacy by using such a combination therapy. Our in vivo study also demonstrated that the combination of SAHA and TKI for the treatment of breast cancer significantly reduced tumor burden compared with either SAHA or TKI alone. The significance of our study elucidated another possible underlying molecular mechanism by which HDACi mediated sensitization to TKI. Our results unveiled a critical role of EGFR acetylation that regulates EGFR tyrosine phosphorylation and may further provide an experiment-based rationale for combinatorial targeted therapy.
Resumo:
OBJECTIVES: To determine normal values for four commonly used clinical functional balance tests from community-dwelling women aged 20 to 80 and to identify any significant decline due to aging. DESIGN: A cross-sectional study was undertaken to provide normative values for four clinical balance tests across 6 decade cohorts. SETTING: The Betty Byrne-Henderson Center for Women and Aging, Royal Womens' Hospital, Brisbane, Australia. PARTICIPANTS: Four hundred fifty-six community-dwelling, independently ambulant women with no obvious neurological or musculoskeletal-related disability, aged 20 to 80, were randomly recruited from a large metropolitan region. MEASUREMENTS: The clinical balance measures/tests were the Timed Up and Go test, step test, Functional Reach test, and lateral reach test. Multivariate analysis was used to test the effect for age, height, and activity level. RESULTS: Normal data were produced for each test across each decade cohort. Gradual decline in balance performance was confirmed, with significant effect for age demonstrated. CONCLUSION: New normative data across the adult age decades are available for these clinical tests. Use of clinical balance tests could complement other balance tests and be used to screen women aged 40 to 60 whose performance is outside the normal values for age and to decrease later falls risk.
Resumo:
The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.
Resumo:
Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
Resumo:
Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.