848 resultados para Portfolio optimization
Resumo:
Tutkimus keskittyy kansainväliseen hajauttamiseen suomalaisen sijoittajan näkökulmasta. Tutkimuksen toinen tavoite on selvittää tehostavatko uudet kovarianssimatriisiestimaattorit minimivarianssiportfolion optimointiprosessia. Tavallisen otoskovarianssimatriisin lisäksi optimoinnissa käytetään kahta kutistusestimaattoria ja joustavaa monimuuttuja-GARCH(1,1)-mallia. Tutkimusaineisto koostuu Dow Jonesin toimialaindekseistä ja OMX-H:n portfolioindeksistä. Kansainvälinen hajautusstrategia on toteutettu käyttäen toimialalähestymistapaa ja portfoliota optimoidaan käyttäen kahtatoista komponenttia. Tutkimusaieisto kattaa vuodet 1996-2005 eli 120 kuukausittaista havaintoa. Muodostettujen portfolioiden suorituskykyä mitataan Sharpen indeksillä. Tutkimustulosten mukaan kansainvälisesti hajautettujen investointien ja kotimaisen portfolion riskikorjattujen tuottojen välillä ei ole tilastollisesti merkitsevää eroa. Myöskään uusien kovarianssimatriisiestimaattoreiden käytöstä ei synnytilastollisesti merkitsevää lisäarvoa verrattuna otoskovarianssimatrisiin perustuvaan portfolion optimointiin.
Resumo:
A company’s competence to manage its product portfolio complexity is becoming critically important in the rapidly changing business environment. The continuous evolvement of customer needs, the competitive market environment and internal product development lead to increasing complexity in product portfolios. The companies that manage the complexity in product development are more profitable in the long run. The complexity derives from product development and management processes where the new product variant development is not managed efficiently. Complexity is managed with modularization which is a method that divides the product structure into modules. In modularization, it is essential to take into account the trade-off between the perceived customer value and the module or component commonality across the products. Another goal is to enable the product configuration to be more flexible. The benefits are achieved through optimizing complexity in module offering and deriving the new product variants more flexibly and accurately. The developed modularization process includes the process steps for preparation, mapping the current situation, the creation of a modular strategy and implementing the strategy. Also the organization and support systems have to be adapted to follow-up targets and to execute modularization in practice.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
This thesis examines three different, but related problems in the broad area of portfolio management for long-term institutional investors, and focuses mainly on the case of pension funds. The first idea (Chapter 3) is the application of a novel numerical technique – robust optimization – to a real-world pension scheme (the Universities Superannuation Scheme, USS) for first time. The corresponding empirical results are supported by many robustness checks and several benchmarks such as the Bayes-Stein and Black-Litterman models that are also applied for first time in a pension ALM framework, the Sharpe and Tint model and the actual USS asset allocations. The second idea presented in Chapter 4 is the investigation of whether the selection of the portfolio construction strategy matters in the SRI industry, an issue of great importance for long term investors. This study applies a variety of optimal and naïve portfolio diversification techniques to the same SRI-screened universe, and gives some answers to the question of which portfolio strategies tend to create superior SRI portfolios. Finally, the third idea (Chapter 5) compares the performance of a real-world pension scheme (USS) before and after the recent major changes in the pension rules under different dynamic asset allocation strategies and the fixed-mix portfolio approach and quantifies the redistributive effects between various stakeholders. Although this study deals with a specific pension scheme, the methodology can be applied by other major pension schemes in countries such as the UK and USA that have changed their rules.
Resumo:
This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.
Resumo:
Recent research has shown that the performance of a single, arbitrarily efficient algorithm can be significantly outperformed by using a portfolio of —possibly on-average slower— algorithms. Within the Constraint Programming (CP) context, a portfolio solver can be seen as a particular constraint solver that exploits the synergy between the constituent solvers of its portfolio for predicting which is (or which are) the best solver(s) to run for solving a new, unseen instance. In this thesis we examine the benefits of portfolio solvers in CP. Despite portfolio approaches have been extensively studied for Boolean Satisfiability (SAT) problems, in the more general CP field these techniques have been only marginally studied and used. We conducted this work through the investigation, the analysis and the construction of several portfolio approaches for solving both satisfaction and optimization problems. We focused in particular on sequential approaches, i.e., single-threaded portfolio solvers always running on the same core. We started from a first empirical evaluation on portfolio approaches for solving Constraint Satisfaction Problems (CSPs), and then we improved on it by introducing new data, solvers, features, algorithms, and tools. Afterwards, we addressed the more general Constraint Optimization Problems (COPs) by implementing and testing a number of models for dealing with COP portfolio solvers. Finally, we have come full circle by developing sunny-cp: a sequential CP portfolio solver that turned out to be competitive also in the MiniZinc Challenge, the reference competition for CP solvers.
Resumo:
The study investigates the role of credit risk in a continuous time stochastic asset allocation model, since the traditional dynamic framework does not provide credit risk flexibility. The general model of the study extends the traditional dynamic efficiency framework by explicitly deriving the optimal value function for the infinite horizon stochastic control problem via a weighted volatility measure of market and credit risk. The model's optimal strategy was then compared to that obtained from a benchmark Markowitz-type dynamic optimization framework to determine which specification adequately reflects the optimal terminal investment returns and strategy under credit and market risks. The paper shows that an investor's optimal terminal return is lower than typically indicated under the traditional mean-variance framework during periods of elevated credit risk. Hence I conclude that, while the traditional dynamic mean-variance approach may indicate the ideal, in the presence of credit-risk it does not accurately reflect the observed optimal returns, terminal wealth and portfolio selection strategies.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This article investigates the performance of a model called Full-Scale Optimisation, which was presented recently and is used for financial investment advice. The investor’s preferences of expected risk and return are entered into the model, and a recommended portfolio is produced. This model is theoretically more accurate than the mainstream investment advice model, called Mean-Variance Optimization, as there are fewer assumptions made. Our investigation of the model’s performance is broader when it comes to investor preferences, and more general when it comes to investment type, as compared to previous studies. Our investigation shows that Full-Scale Optimisation is more widely applicable than earlier known.
Resumo:
AMS subject classification: 90C31, 90A09, 49K15, 49L20.
Resumo:
This report describes a tool for global optimization that implements the Differential Evolution optimization algorithm as a new Excel add-in. The tool takes a step beyond Excel’s Solver add-in, because Solver often returns a local minimum, that is, a minimum that is less than or equal to nearby points, while Differential Evolution solves for the global minimum, which includes all feasible points. Despite complex underlying mathematics, the tool is relatively easy to use, and can be applied to practical optimization problems, such as establishing pricing and awards in a hotel loyalty program. The report demonstrates an example of how to develop an optimum approach to that problem.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
Objective: The biochemical alterations between inflammatory fibrous hyperplasia (IFH) and normal tissues of buccal mucosa were probed by using the FT-Raman spectroscopy technique. The aim was to find the minimal set of Raman bands that would furnish the best discrimination. Background: Raman-based optical biopsy is a widely recognized potential technique for noninvasive real-time diagnosis. However, few studies had been devoted to the discrimination of very common subtle or early pathologic states as inflammatory processes that are always present on, for example, cancer lesion borders. Methods: Seventy spectra of IFH from 14 patients were compared with 30 spectra of normal tissues from six patients. The statistical analysis was performed with principal components analysis and soft independent modeling class analogy cross-validated, leave-one-out methods. Results: Bands close to 574, 1,100, 1,250 to 1,350, and 1,500 cm(-1) (mainly amino acids and collagen bands) showed the main intragroup variations that are due to the acanthosis process in the IFH epithelium. The 1,200 (C-C aromatic/DNA), 1,350 (CH(2) bending/collagen 1), and 1,730 cm(-1) (collagen III) regions presented the main intergroup variations. This finding was interpreted as originating in an extracellular matrix-degeneration process occurring in the inflammatory tissues. The statistical analysis results indicated that the best discrimination capability (sensitivity of 95% and specificity of 100%) was found by using the 530-580 cm(-1) spectral region. Conclusions: The existence of this narrow spectral window enabling normal and inflammatory diagnosis also had useful implications for an in vivo dispersive Raman setup for clinical applications.