398 resultados para Polyphenols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenols are present in foods and beverages and are related to sensorial qualities such as color, bitterness, and astringency, which are relevant in wine, tea, grape juice, and other products. These compounds occur naturally in forms varying from simple phenolic acids to complex polymerized tannins. Thus, it is reasonable to expect that grape-derived products elaborated in the presence of skins and seeds, such as wine and grape juice, are natural sources of flavonoids in the diet. Carcinogenesis is a multistep process that is characterized by genetic, epigenetic, and phenotypic changes. With increasing knowledge of these mechanisms, and the conclusion that most cases of cancer are preventable, efforts have focused on identifying the agents with potential anticancer properties. The use of grape polyphenols against the carcinogenesis process seems to be a suitable alternative for either prevention and/or therapeutic purposes. The aim of this article is to show the molecular data generated from the use of grape polyphenols against carcinogenesis using in vivo and in vitro test systems. © Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenols represent a group of chemical substances common in plants, structurally characterized by the presence of one or more phenol units. Polyphenols are the most abundant antioxidants in human diets and the largest and best studied class of polyphenols is flavonoids, which include several thousand compounds. Numerous studies confirm that they exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies correlate flavonoid intake with a reduced incidence of chronic diseases, such as cardiovascular disease, diabetes and cancer. The involvement of reactive oxygen species (ROS) in the etiology of these degenerative conditions has suggested that phytochemicals showing antioxidant activity may contribute to the prevention of these pathologies. The present review deals with phenolic compounds in plants and reports on recent studies. Moreover, the present work includes information on the relationships between the consumption of these compounds, via feeding, and risk of disease occurrence, i.e. the effect on human health. Results obtained on herbs, essential oils, from plants grown in tropical, subtropical and temperate regions, were also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant activity and hepatoprotective properties of the aqueous extract and tetrahydrofuran-extracted phenolic fractions of Halimeda opuntia (Linnaeus) Lamouroux were investigated in rats with chemically induced liver injury. Total polyphenols were determined by using the Folin-Ciocalteau reagent. Liver damage was induced by CCl4 and assessed by a histological technique. Reverse transcription/polymerase chain reaction (RT/PCR) analysis showed increased superoxide dismutase (SOD) and catalase (CAT) gene expression and activities in the group treated with free phenolic acid (FPA) fractions of H. opuntia, suggesting inducing effects on both enzymes. In addition, rats treated with FPA fractions displayed lower liver thiobarbituric acid reactive substance (TBARS) levels than those observed for rats in the CCl4-treated group. These data suggest that the phenolic fractions from H. opuntia may protect the liver against oxidative stress-inducing effects of chemicals by modulating its antioxidant enzymes and oxidative status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The market for cosmeceuticals continues with significant annual growth, but today consumers are more aware of nutritional products that contribute to both skin health and disease prevention. In the last 10 years, pharmacists, chemists, nutritionists, and physicians have been working together to develop new nutritional applications to satisfy peoples needs and demands. As a recent result of convergence phenomenon between cosmetics and food industries, nutricosmetics is a blurry area unfamiliar to many consumers and sometimes even to foods and cosmetics experts. Characterized by oral supplementation of nutrients, nutricosmetics are also known as beauty pills,beauty from within, and even oral cosmetics. The major claim is the antiaging effect, reducing wrinkles by fighting free radicals generated by solar radiation. Among the ingredients used in nutricosmetics, antioxidants represent the most crucial. The best-known antioxidants are carotenoids (beta-carotene, lycopene, lutein, zeaxanthin, and astaxanthin) and polyphenols (anthocyanidins, catechins, flavonoids, tannins, and procyanidins). This study presents an overview about the concept of nutricosmetics and gives us information about the difference between nutricosmetics, nutraceuticals, and cosmeceuticals. The article also discusses about carotenoids and polyphenols, two classes of ingredients often employed in such products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a polyphenol-rich resinous substance extensively used to improve health and prevent diseases. The effects of polyphenols from different sources of propolis on atherosclerotic lesions and inflammatory and angiogenic factors were investigated in LDL receptor gene (LDLr-/-) knockout mice. The animals received a cholesterol-enriched diet to induce the initial atherosclerotic lesions (IALs) or advanced atherosclerotic lesions (AALs). The IAL or AAL animals were divided into three groups, each receiving polyphenols from either the green, red or brown propolis (250 mg/kg per day) by gavage. After 4 weeks of polyphenol treatment, the animals were sacrificed and their blood was collected for lipid profile analysis. The atheromatous lesions at the aortic root were also analyzed for gene expression of inflammatory and angiogenic factors by quantitative real-time polymerase chain reaction and immunohistochemistry. All three polyphenol extracts improved the lipid profile and decreased the atherosclerotic lesion area in IAL animals. However, only polyphenols from the red propolis induced favorable changes in the lipid profiles and reduced the lesion areas in AAL mice. In IAL groups. VCAM, MCP-1, FGF, PDGF, VEGF, PECAM and MMP-9 gene expression was down-regulated, while the metalloproteinase inhibitor TIMP-1 gene was up-regulated by all polyphenol extracts. In contrast, for advanced lesions, only the polyphenols from red propolis induced the down-regulation of CD36 and the up-regulation of HO-1 and TIMP-1 when compared to polyphenols from the other two types of propolis. In conclusion, polyphenols from propolis, particularly red propolis, are able to reduce atherosclerotic lesions through mechanisms including the modulation of inflammatory and angiogenic factors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC50 = 10.8 mu g/ml), in combination of A. leiocarpus with Khaya senegalensis (IC50 = 12.5 mu g/ml), ellagic acid (IC50 = 2.88 mu M), and geraniin (IC50 = 11.74 mu M). In general growth inhibition was concentration-dependent revealing IC50 values ranging between 10.8 and -40.1 mu g/ml and 2.88 and 11.74 mu M for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC50 values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocoa ( Theobroma cacao L. ) is an important allogamous tropical tree crop, whose centre of diversity is considered to be in Central America. Dry cocoa beans from five cocoa clones, and their intercrossed hybrids were analysed based on the variation of alkaloids and polyphenolic compounds contents, in order to gain insights on the heterosis and broad-sense heritability. Polyphenols and alkaloids were analysed at 280 nm by HPLC, using a Photodiode Array Detector (PDA); while anthocyanins were separated with the SEP-PAK Vac 6cc 1000 mg (waters) column and measured at 520 nm with a PDA. Dry cocoa beans displayed high content of purine alkaloids (2.1 and 8.8 mg g-1 for caffein and theobromine, respectively), and polyphenols (25 and 2978 µg g-1 for catechin and epicatechin, respectively). Among the five cocoa clones, SNK16 was the highest in purine alkaloid (caffein and theobromin) and flavanol (catechin and epicatechin); while T79/467 possessed the greatest quantity of cyanidin-3-galactoside and cyanidin-3-arabinoside. From all the parameters studied, anthocyanins (Cyanidin-3-galactoside and cyanidin-3-arabinoside) exhibited the highest level of heterosis. Parental genotypes SNK16 and T79/467 showed good aptitudes for the combination of characters because their reciprocal hybrids F5 and F9, distinguished themselves by better levels of mid-parent heterosis values. Besides, the heritability value in strict sense of this Cyanidin-3-galactoside was very high. Absence of significant difference between genotypes, coming from reciprocal crossbreeding for Cyanidin-3-galactoside, suggests that this character in cocoa would be nuclear contrary to purine alkaloids and flavan-3-ols, where their transmission to offsprings can be stated as cytoplasmic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The balance between oxidation and reduction is important for maintaining a healthy biological system. Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) and limited endogenous defense systems, and this imbalance can adversely alter lipids, proteins and DNA, causing a number of human diseases. Thus, exogenous antioxidants that can neutralize the effect of free radicals are needed to diminish the cumulative effects of oxidative damage over human life span. Current research reveals that phenolic compounds in plants possess high antioxidant activity and free radical scavenging capacity and can prevent the body from oxidative damage over human life span. This review focuses on the present understanding of free radicals and antioxidants and their importance in human health and disease. Information about the chemical features of free radicals as well as their deleterious effects on cell structures is reviewed. The chemical structure and anti-oxidative mechanisms of essential polyphenols and their potential health benefits are presented. In addition, the limitation of natural antioxidants and a perspective on likely future trends in this field are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceylon gooseberry is a deep-purple exotic berry that is being produced in Brazil with great market potential. This work aimed to determine major phenolic compounds in this specie by HPLC-PDA-ESI/MS. Samples were collected in two different seasons. Pulp and skin were analyzed separately. Non-acylated rutinoside derivatives of delphinidin (∼60-63%) and cyanidin (∼17-21%) were major anthocyanins tentatively identified. All anthocyanins had higher concentration in skin than in pulp (64-82 and 646-534mg of cyaniding-3-glucoside equivalents/100g skin and pulp, respectively). Moreover, anthocyanin profile changed between sampling dates (p<0.05). Mainly for delphinidin-3-rutinoside which could be a result of season variation. In this specie, non-anthocyanin polyphenols represent less than 35% of total extracted polyphenols. The tentative identification proposed a flavonol and three ellagitannins as major compounds of the non-anthocyanin phenolics fraction. Finally, anthocyanin is the major phenolic class in this fruit and its composition and content are significantly affected by season.