981 resultados para Polynomial time hierarchy
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
We consider the problem of matching people to items, where each person ranks a subset of items in an order of preference, possibly involving ties. There are several notions of optimality about how to best match a person to an item; in particular, popularity is a natural and appealing notion of optimality. A matching M* is popular if there is no matching M such that the number of people who prefer M to M* exceeds the number who prefer M* to M. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not admit popular matchings. This motivates the following extension of the popular matchings problem: Given a graph G = (A U 3, E) where A is the set of people and 2 is the set of items, and a list < c(1),...., c(vertical bar B vertical bar)> denoting upper bounds on the number of copies of each item, does there exist < x(1),...., x(vertical bar B vertical bar)> such that for each i, having x(i) copies of the i-th item, where 1 <= xi <= c(i), enables the resulting graph to admit a popular matching? In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c(i) is 1 or 2. We show a polynomial time algorithm for a variant of the above problem where the total increase in copies is bounded by an integer k. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M, T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distribution over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P, Q) >= phi(Q, P) for all mixed matchings Q. We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We establish conditions for the existence, in a chordal graph, of subgraphs homeomorphic to K-n (n greater than or equal to 3), K-m,K-n (m,n greater than or equal to 2), and wheels W-r (r greater than or equal to 3). Using these results, we develop a simple linear time algorithm for testing planarity of chordal graphs. We also show how these results lead to simple polynomial time algorithms for the Fixed Subgraph Homeomorphism problem on chordal graphs for some special classes of pattern graphs.
Resumo:
In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.
Resumo:
In computational molecular biology, the aim of restriction mapping is to locate the restriction sites of a given enzyme on a DNA molecule. Double digest and partial digest are two well-studied techniques for restriction mapping. While double digest is NP-complete, there is no known polynomial-time algorithm for partial digest. Another disadvantage of the above techniques is that there can be multiple solutions for reconstruction. In this paper, we study a simple technique called labeled partial digest for restriction mapping. We give a fast polynomial time (O(n(2) log n) worst-case) algorithm for finding all the n sites of a DNA molecule using this technique. An important advantage of the algorithm is the unique reconstruction of the DNA molecule from the digest. The technique is also robust in handling errors in fragment lengths which arises in the laboratory. We give a robust O(n(4)) worst-case algorithm that can provably tolerate an absolute error of O(Delta/n) (where Delta is the minimum inter-site distance), while giving a unique reconstruction. We test our theoretical results by simulating the performance of the algorithm on a real DNA molecule. Motivated by the similarity to the labeled partial digest problem, we address a related problem of interest-the de novo peptide sequencing problem (ACM-SIAM Symposium on Discrete Algorithms (SODA), 2000, pp. 389-398), which arises in the reconstruction of the peptide sequence of a protein molecule. We give a simple and efficient algorithm for the problem without using dynamic programming. The algorithm runs in time O(k log k), where k is the number of ions and is an improvement over the algorithm in Chen et al. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
We consider a framework in which several service providers offer downlink wireless data access service in a certain area. Each provider serves its end-users through opportunistic secondary spectrum access of licensed spectrum, and needs to pay primary license holders of the spectrum usage based and membership based charges for such secondary spectrum access. In these circumstances, if providers pool their resources and allow end-users to be served by any of the cooperating providers, the total user satisfaction as well as the aggregate revenue earned by providers may increase. We use coalitional game theory to investigate such cooperation among providers, and show that the optimal cooperation schemes can be obtained as solutions of convex optimizations. We next show that under usage based charging scheme, if all providers cooperate, there always exists an operating point that maximizes the aggregate revenue of providers, while presenting each provider a share of the revenue such that no subset of providers has an incentive to leave the coalition. Furthermore, such an operating point can be computed in polynomial time. Finally, we show that when the charging scheme involves membership based charges, the above result holds in important special cases.
Resumo:
Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.
Resumo:
We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in $1.5 (\Delta + 2) \ln n$ dimensions, where $\Delta$ is the maximum degree of G. We also show that $\boxi(G) \le (\Delta + 2) \ln n$ for any graph G. Our bound is tight up to a factor of $\ln n$. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree $\Delta$, we show that for almost all graphs on n vertices, its boxicity is upper bound by $c\cdot(d_{av} + 1) \ln n$ where d_{av} is the average degree and c is a small constant. Also, we show that for any graph G, $\boxi(G) \le \sqrt{8 n d_{av} \ln n}$, which is tight up to a factor of $b \sqrt{\ln n}$ for a constant b.
Resumo:
We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.
Resumo:
The Radius of Direct attraction of a discrete neural network is a measure of stability of the network. it is known that Hopfield networks designed using Hebb's Rule have a radius of direct attraction of Omega(n/p) where n is the size of the input patterns and p is the number of them. This lower bound is tight if p is no larger than 4. We construct a family of such networks with radius of direct attraction Omega(n/root plog p), for any p greater than or equal to 5. The techniques used to prove the result led us to the first polynomial-time algorithm for designing a neural network with maximum radius of direct attraction around arbitrary input patterns. The optimal synaptic matrix is computed using the ellipsoid method of linear programming in conjunction with an efficient separation oracle. Restrictions of symmetry and non-negative diagonal entries in the synaptic matrix can be accommodated within this scheme.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a(1), b(1)] x [a(2), b(2)] x ... x [a(k), b(k)]. The boxicity of G, box(G), is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes; i.e., each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset, where S is the ground set and P is a reflexive, antisymmetric and transitive binary relation on S. The dimension of P, dim(P), is the minimum integer t such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P; i.e., S is the vertex set and two vertices are adjacent if and only if they are comparable in P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. It immediately follows that if P is a height-2 poset, then box(G(P)) <= dim(P) <= 2box(G(P)) since the underlying comparability graph of a height-2 poset is a bipartite graph. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with the extended double cover of G, denoted as G(c): Note that G(c) is a bipartite graph with partite sets A and B which are copies of V (G) such that, corresponding to every u is an element of V (G), there are two vertices u(A) is an element of A and u(B) is an element of B and {u(A), v(B)} is an edge in G(c) if and only if either u = v or u is adjacent to v in G. Let P(c) be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P(c)) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) = 2 tree width (G(P)) + 4, since boxicity of any graph is known to be at most its tree width + 2. In the other direction, using the already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta), which is an improvement over the best-known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-is an element of)) for any is an element of > 0 unless NP = ZPP.