951 resultados para Polycrystalline Ceramics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBa2Cu3O7-x wires have been extruded with 2 and 5 wt.% of hydroxy propyl methylcellulose (HPMC) as binder. Both sets of wires sintered below 930°C have equiaxed grains while the wires sintered above this temperature have elongated grains. In the temperature range which gives equiaxed grains, the wires extruded with 5 wt.% HPMC have higher grain size and density. Cracks along the grain boundaries are often observed in the wires having elongated grains. Critical current density, Jc, increases initially, reaches a peak and then decreases with the sintering temperature. The sintering temperature giving a peak in Jc strongly depends on the heat treatment scheme for the wires extruded with 5 wt.% HPMC. TEM studies show that defective layers are formed along grain boundaries for the wires extruded with 5 wt.% HPMC after 5 h oxygenation. After 55 h oxygenation, the defective layers become more localised and grain boundaries adopt an overall cleaner appearance. Densification with equiaxed grains and clean grain boundaries produces the highest Jc's for polycrystalline YBa2Cu3O7 wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation toughening ceramics (TTCs) are engineering materials which combine ceramic properties such as hardness, corrosion resistance and low thermal conductivity with good toughness and mechanical strength. At elevated temperatures their use is limited due to destabilisation of the transformation toughening microstructure (partially stabilised zirconia or PSZ) or creep and hydrothermal degradation (tetragonal zirconia polycrystals or TZPs). Despite these limitations, the use of TTCs, particularly zirconia based, has become widespread. To date, most commercial TTCs are based on combinations of zirconia and one stabilising oxide. This work investigates a zirconia ceramic containing two stabilisers, namely yttria and titania in roughly equal proportions.