95 resultados para Plutonium
Resumo:
"RL-SEP-30"--Cover.
Resumo:
"Date Distributed: October 13, 1960."
Resumo:
This report contains a compilation of critical extrapolations of subcritical neutron multiplication measurements made on assemblies of plutonium metal tamped with Plexiglas.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
Resumo:
This report describes part of a program carried out by the Rocky Flats Division of the Dow Chemical Company for the Division of Nuclear Materials Management (Atomic Energy Commission), to develop procedures and containers which would permit the shipment of plutonium oxide without shipper-receiver discrepancies. This report covers the design, testing and evaluation of plutonium oxide shipping packages.
Resumo:
A preliminary survey of the plutonium rich corners of the Pu-Al-Ga, Pu-Zn-Ga and Pu-Ce-Ga systems was made. Emphasis was placed on the determination of how well the delta phase of plutonium was stabilized by these alloy additions.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
The total hemispherical emittance of polished and of oxidized alpha plutonium : preliminary report /
Resumo:
The total hemispherical emittance of polished 99.66 w/o plutonium was determined to be 0.37 at 88.7° and 89.0°C. The emittance of polished sample was measured after oxidation in a humid air atmosphere for 24, 66, and 168 hours. Emittances of 0.47, 0.54, and 0.70 were obtained. The apparatus was used to determine a total hemispherical emittance for candle soot of 0.96. Total errors were estimated to be less than ±3%.
Resumo:
Prepared for the U. S. Environmental Protection Agency, Office of Research and Development, Monitoring Systems Research and Development Division, Environmental Monitoring and Support Laboratory, Las Vegas, Nev.
Resumo:
The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio Pu-240/Pu-239. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 +/- 0.046) evidences that the Pu originates from a nuclear reactor (Pu239+240 activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated.
Resumo:
Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction is measured by alpha spectrometry. The method was tested with certified sediment and soil samples and found to be applicable for the analysis of environmental samples containing a wide range of Am-241 activity. Proceeding from the on-line method developed for americium, a method was also developed for separating plutonium and americium. Plutonium is reduced to Pu(III), and separated together with Am(III) throughout the procedure. Pu(III) and Am(III) are eluted from the ion chromatography column as anionic dipicolinate and oxalate complexes, respectively, and measured by alpha spectrometry.
Resumo:
Uranium-Plutonium mixed carbide with a Pu/(U+Pu) ratio of 0.55 is to be used as the fuel in the Fast Breeder Test Reaotor - (PBTRj at Kalpakkam, India. carbur ization of the stainlese steel clad by this fuel is determined by its carbon potential. - i. Because the carbon potential of this fuel composition is not 1 available in the literature, it was meadured by the methanehydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-tohydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThCz as well as Mo-Mo2C system,whiah is an important binary in the aotinide-fission product-carbon systems, were also measured by this technique, in the temperature range 973 K to 1173 K. The data for ! the Mo-MozC system are in agreement with values reported in the literature. The results for the ThC-ThC2 system are different from estimated values with large unaertainty limits given in the literature. The data on (U,Pu) mixed carbide indicates possibility of stainlesss steel clad attack under isothermal equilibrium conditions.
Resumo:
Radioactivity measured in samples from the NEA-Dumping-Site not only emanated from dumped barrels. Just as everywhere on the world also fallout from former nuclear weapon tests can be found there. Radionuclides which can emanate from different sources do not tell anything about their origin. To assess the fractions from various sources activity ratios from radionuclides can be used. There are different activity ratios for fallout and for waste from peaceful nuclear power engeneering. The comparison of the ratios of the plutonium isotopes Pu-238 and the sum of Pu-239 and Pu-240 (Pu-238/Pu-239,240) in benthic samples from the dumping site and from reference sites without waste dumping gives a clear hint. In the sampling period from 1980 to 2000 for samples from the dumping site this ratio increases significantly from 1986 on. Radioactivity emanating from the dumped barrels is regarded as causing this.
Resumo:
The identification of artificial radionuclides in fish involves some diffculties, because the quantities of these nuclides are very low (10-16 to 10-10 g/kg). The procedures have to be done very carefully. The sample preparation, the radiochemical analyses and the final preparation of the samples for the detection of the radioactivity of strontium-90, plutonium-238, -239, -240 and americium-241 are briefly described. The levels of artificial radioactivity in some species of fish from the North Sea are shown. The additional exposure to radiation by artificial radionuc1ides by ingestion of fish amounts only to about 0,02 % of the mean exposure to natural radiation. Nevertheless further monitoring of radioactivity should be continued in order to ensure that changes can be detected in time.
Resumo:
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX. © 2009 Elsevier B.V. All rights reserved.