996 resultados para Plasmonic Nanoparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable sub-nanometre gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near infra-red, these disappear for increasing numbers of layers. These doublets arise from plasmonic charge transfer, allowing the direct optical measurement of out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the fabrication and characterization of hybrids of vertically-aligned carbon nanotube forests and gold nanoparticles for improved manipulation of their plasmonic properties. Raman spectroscopy of nanotube forests performed at the separation area of nanotube-nanoparticles shows a scattering enhancement factor of the order of 1 × 10(6). The enhancement is related to the plasmonic coupling of the nanoparticles and is potentially applicable in high-resolution scanning near-field optical microscopy, plasmonics, and photovoltaics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong absorption of gold nanoparticles in the visible spectral range allows the localized generation of heat in a volume of only a few tens of nanometer. The efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest that the gold nanoparticles can be used as selective photothermal agents in molecular cell targeting. The selective destruction of alkaline phosphatase, the permeabilization of the cell membrane and the selective killing of cells by laser irradiating gold nanoparticles were demonstrated. The potential of using this selective technique in molecularly targeted photothermal therapy and transfection is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation of gold nanoparticles with rigid cucurbit[5]uril molecules generates fixed inter-particle separations of 0.91 nm. These nanoparticle assemblies possess discrete plasmonic modes which elucidate nanoscale growth and serve as molecular-recognition based SERS substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.