978 resultados para Plants, Useful
Resumo:
The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.
Resumo:
A comparative approach is potentially useful for understanding the role of mammal innate immunity role in stimulating adaptive immunity as well as the relationship between these two types of immune strategies. Considerable progress has been made in the elucidation of the co-ordinated events involved in plant perception of infection and their mobilisation of defence responses. Although lacking immunoglobulin molecules, circulating cells, and phagocytic processes, plants successfully use pre-formed physical and chemical innate defences, as well as inducible adaptive immune strategies. In the present paper, we review some shared and divergent immune aspects present in both animals and plants. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Background. The last comprehensive review of experimental research on effects of homeopathic treatments on plants was published in 1984, and lacked formal predefined criteria to assess study quality. Since then several new studies with more advanced methods have been published.Objectives: To compile a review of the literature on basic research in homeopathy with healthy plants with particular reference to studies investigating specific effects of homeopathic remedies.Methods: The literature search included English, French, German, Italian, Portuguese and Spanish publications from 1920 to April 2009, using predefined selection criteria. We included experiments with healthy whole plants, seeds, plant parts and cells. The outcomes had to be measured by established procedures and statistically evaluated. We developed a Manuscript Information Score (MIS) and included only publications which provided enough information for proper interpretation (MIS >= 5). A formallised Study Methods Evaluation Procedure (SMEP) was used to evaluate these studies, and the subgroup of studies with adequate controls to identify specific effects.Results: A total of 86 studies in 79 publications was identified, 43 studies included statistics, 29 had MIS >= 5, and 15 studies investigated the specificity of homeopathic preparations. Specific effects of decimal, centesimal and fifty millesimal potencies were found including dilution levels far beyond the Avogadro number. In consecutive series of potencies only some of the tested potencies showed effects. There were many individual studies with diverse methods and very few reproduction trials.Conclusions: Healthy plant models seem an useful approach to investigate basic research questions about the specificity of homeopathic preparations. More investigations with more advanced methods are recommended, especially in the sectors of potentisation techniques, effective potency levels and conditions for reproducibility. Systematic negative control experiments should become a routine procedure to control the stability of the experimental systems. Homeopathy (2009) 98, 228-243.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An integrated and interdisciplinary research programme with native medicinal plants from tropical forests has been performed in order to obtain new forest products for sustainable use in regional markets vis-à-vis ecosystem conservation. For the success of this programme ethnopharmacological studies are very important with respect to (i) identification of useful plants including medicinal and aromatic species; (ii) recuperation and preservation of traditional knowledge about native plants; and (iii) identification of potential plants with economic value. The plants are selected with a view to evaluate efficacy and safety (pharmacological and toxicological studies), and phytochemical profile and quality control (phytochemical and chromatographic characterization). These studies are very important to add value to plant products and also to mitigate unscrupulous exploitation of medicinal plants by local communities, since multiple use of plants represents an excellent strategy for sustaining the tropical ecosystem through ex situ and in situ conservation. Thus, conservation of tropical resources is possible in conjunction with improvements in the quality of life of the traditional communities and production of new products with therapeutic, cosmetic and 'cosmeceutic' value. © NIAB 2005.
Resumo:
Combined Refrigeration and Power (CRP) plants generate power and refrigerate a thermal load simultaneously from the same fuel. The overall efficiency is a parameter based on the first law generally used to quantify the fuel saving, in the sense that a plant that has greater overall efficiency saves more fuel than others to generate the same useful energy. However, the literature shows that the overall efficiency and other parameters of performance are defined in several different ways. This heterogeneity is not desirable when considering a coherent and universally accepted parameter of performance based on the first law. In this work, some parameters found in the literature are critically analyzed in order to indicate the most proper one. The indicated parameter is then formally analyzed in order to verify its mathematical consistency. The primary energy rate is considered the most well-suited parameter based on the first law to characterize the performance of a CRP plant. © 2013 Elsevier Ltd and IIR.
Resumo:
Extracts of plants of the Sclerolobium genus are disclosed, as well as methods for preparing same and cosmetic and pharmaceutical formulations containing these extracts. These extracts can be obtained by polar and/or apolar extraction, each fraction containing different anti-oxidants, all of which are useful for topical treatment. Also disclosed is the use of this extract in cosmetic and/or pharmaceutical formulations for topical use.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development and the growth of plants is strongly affected by the interactions between roots, rootrnassociated organisms and rhizosphere communities. Methods to assess such interactions are hardly torndevelop particularly in perennial and woody plants, due to their complex root system structure and theirrntemporal change in physiology patterns. In this respect, grape root systems are not investigated veryrnwell. The aim of the present work was the development of a method to assess and predict interactionsrnat the root system of rootstocks (Vitis berlandieri x Vitis riparia) in field. To achieve this aim, grapernphylloxera (Daktulosphaira vitifoliae Fitch, Hemiptera, Aphidoidea) was used as a graperoot parasitizingrnmodel.rnTo develop the methodical approach, a longt-term trial (2006-2009) was arranged on a commercial usedrnvineyard in Geisenheim/Rheingau. All 2 to 8 weeks the top most 20 cm of soil under the foliage wallrnwere investigated and root material was extracted (n=8-10). To include temporal, spatial and cultivarrnspecific root system dynamics, the extracted root material was analyzed digitally on the morphologicalrnproperties. The grape phylloxera population was quantified and characterized visually on base of theirrnlarvalstages (oviparous, non oviparous and winged preliminary stages). Infection patches (nodosities)rnwere characterized visually as well, partly supported by digital root color analyses. Due to the knownrneffects of fungal endophytes on the vitality of grape phylloxera infested grapevines, fungal endophytesrnwere isolated from nodosity and root tissue and characterized (morphotypes) afterwards. Further abioticrnand biotic soil conditions of the vineyards were assessed. The temporal, spatial and cultivar specificrnsensitivity of single parameters were analyzed by omnibus tests (ANOVAs) and adjacent post-hoc tests.rnThe relations between different parameters were analyzed by multiple regression models.rnQuantitative parameters to assess the degeneration of nodosity, the development nodosity attachedrnroots and to differentiate between nodosities and other root swellings in field were developed. Significantrndifferences were shown between root dynamic including parameters and root dynamic ignoringrnparameters. Regarding the description of grape phylloxera population and root system dynamic, thernmethod showed a high temporal, spatial and cultivar specific sensitivity. Further, specific differencesrncould be shown in the frequency of endophyte morphotypes between root and nodosity tissue as wellrnas between cultivars. Degeneration of nodosities as well as nodosity occupation rates could be relatedrnto the calculated abundances of grape phylloxera population. Further ecological questions consideringrngrape root development (e.g. relation between moisture and root development) and grape phylloxerarnpopulation development (e.g. relation between temperature and population structure) could be answeredrnfor field conditions.rnGenerally, the presented work provides an approach to evaluate vitality of grape root systems. Thisrnapproach can be useful, considering the development of control strategies against soilborne pests inrnviticulture (e.g. grape phylloxera, Sorospheara viticola, Roesleria subterranea (Weinm.) Redhaed) as well as considering the evaluation of integrated management systems in viticulture.
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.
Resumo:
Background Simple Sequence Repeats (SSRs) are widely used in population genetic studies but their classical development is costly and time-consuming. The ever-increasing available DNA datasets generated by high-throughput techniques offer an inexpensive alternative for SSRs discovery. Expressed Sequence Tags (ESTs) have been widely used as SSR source for plants of economic relevance but their application to non-model species is still modest. Methods Here, we explored the use of publicly available ESTs (GenBank at the National Center for Biotechnology Information-NCBI) for SSRs development in non-model plants, focusing on genera listed by the International Union for the Conservation of Nature (IUCN). We also search two model genera with fully annotated genomes for EST-SSRs, Arabidopsis and Oryza, and used them as controls for genome distribution analyses. Overall, we downloaded 16 031 555 sequences for 258 plant genera which were mined for SSRsand their primers with the help of QDD1. Genome distribution analyses in Oryza and Arabidopsis were done by blasting the sequences with SSR against the Oryza sativa and Arabidopsis thaliana reference genomes implemented in the Basal Local Alignment Tool (BLAST) of the NCBI website. Finally, we performed an empirical test to determine the performance of our EST-SSRs in a few individuals from four species of two eudicot genera, Trifolium and Centaurea. Results We explored a total of 14 498 726 EST sequences from the dbEST database (NCBI) in 257 plant genera from the IUCN Red List. We identify a very large number (17 102) of ready-to-test EST-SSRs in most plant genera (193) at no cost. Overall, dinucleotide and trinucleotide repeats were the prevalent types but the abundance of the various types of repeat differed between taxonomic groups. Control genomes revealed that trinucleotide repeats were mostly located in coding regions while dinucleotide repeats were largely associated with untranslated regions. Our results from the empirical test revealed considerable amplification success and transferability between congenerics. Conclusions The present work represents the first large-scale study developing SSRs by utilizing publicly accessible EST databases in threatened plants. Here we provide a very large number of ready-to-test EST-SSR (17 102) for 193 genera. The cross-species transferability suggests that the number of possible target species would be large. Since trinucleotide repeats are abundant and mainly linked to exons they might be useful in evolutionary and conservation studies. Altogether, our study highly supports the use of EST databases as an extremely affordable and fast alternative for SSR developing in threatened plants.
Resumo:
Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.
Resumo:
The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.