924 resultados para Plant pathogen interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced changes in plant quality can mediate indirect interactions between herbivores. Although the sequence of attack by different herbivores has been shown to influence plant responses, little is known about how this affects the herbivores themselves. We therefore investigated how induction by the leaf herbivore Spodoptera frugiperda influences resistance of teosinte (Zea mays mexicana) and cultivated maize (Zea mays mays) against root-feeding larvae of Diabrotica virgifera virgifera. The importance of the sequence of arrival was tested in the field and laboratory. Spodoptera frugiperda infestation had a significant negative effect on colonization by D. virgifera larvae in the field and weight gain in the laboratory, but only when S. frugiperda arrived on the plant before the root herbivore. When S. frugiperda arrived after the root herbivore had established, no negative effects on larval performance were detected. Yet, adult emergence of D. virgifera was reduced even when the root feeder had established first, indicating that the negative effects were not entirely absent in this treatment. The defoliation of the plants was not a decisive factor for the negative effects on root herbivore development, as both minor and major leaf damage resulted in an increase in root resistance and the extent of biomass removal was not correlated with root-herbivore growth. We propose that leaf-herbivore-induced increases in feeding-deterrent and/or toxic secondary metabolites may account for the sequence-specific reduction in root-herbivore performance. Synthesis. Our results demonstrate that the sequence of arrival can be an important determinant of plant-mediated interactions between insect herbivores in both wild and cultivated plants. Arriving early on a plant may be an important strategy of insects to avoid competition with other herbivores. To fully understand plant-mediated interactions between insect herbivores, the sequence of arrival should be taken into account. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic infection and inflammation are defining characteristics of cystic fibrosis (CF) airway disease. Conditions within the airways of patients living with CF are conducive to colonisation by a variety of opportunistic bacterial, viral and fungal pathogens. Improved molecular identification of microorganisms has begun to emphasise the polymicrobial nature of infections in the CF airway microenvironment. Changes to CF airway physiology through loss of cystic fibrosis transmembrane conductance regulator functionality result in a wide range of immune dysfunctions, which permit pathogen colonisation and persistence. This review will summarise the current understanding of how CF pathogens infect, interact with and evade the CF host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolomics as the study of the entire set of metabolites of a given organism is an important frontier in life sciences. As a tool that captures the ‘front end’ of cellular machineries, metabolomics is particularly suited to investigate biotic interactions, including for instance the interplay between plants and insects. In this review, we discuss the opportunities and challenges of metabolomics to study plant–herbivore interactions. We first present a brief overview of the typical analytical workflows used in metabolomics and their associated issues, in particular those related to metabolome coverage and compound identification. Second, recent advances in the field of plant–herbivore relationships that are promoted by non-targeted approaches are reviewed, with examples ranging from classical herbivore resistance patterns to plant-mediated interactions across different spatial scales and volatile-mediated tritrophic interactions. Through general considerations and the discussion of a few selected case studies, our review highlights the potential and challenges of metabolomics as a research approach to understand biological interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08