786 resultados para Picture-writing.
Resumo:
Children’s fascination with monsters is a normal part of childhood development. Children’s literature reflects this with a wealth of stories featuring monsters, ranging from fairy tales to picture books to books for independent readers. These stories can raise concerns from educators, parents and other sections of the community such as political and religious institutions on the basis that they could be disturbing or harmful to children. In contrast, there is evidence to indicate the potential for managing fears and enhancing feelings of empowerment in children through the reading of stories featuring monsters. A reappraisal of these stories from a predominantly therapeutic perspective reveals that they may act as agents of positive change in six ways – catharsis, naming, taming, integration, transformation and moral empowerment. Two of these functions, transformation and moral empowerment, are examined further in three case studies of stories for the older reader that feature monsters, Wolf Brother by Michelle Paver, Monster Blood Tattoo, Book One: Foundling by D.M. Cornish and my manuscript, ‘The Monster Chronicles’. The insights from this research have been used to inform the writing and editing of ‘The Monster Chronicles’ and inherent to that, my goal of creating a children’s story featuring monsters that is sensitive to children’s fears and their desire for empowerment.
Resumo:
Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
Resumo:
In response to international concerns about scientific literacy and students’ waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue of biosecurity on the development of students’ scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a 6th grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi-experimental design with two classes of Australian middle school students (i.e., 6th grade, 11 years of age, n=55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about socioscientific issues (SSI) in a way that integrates scientific information into narrative storylines. Extending the practice to older students, and exploring additional issues related to writing about SSI are recommended for further research.
Resumo:
Reflective skills are widely regarded as a means of improving students’ lifelong learning and professional practice in higher education (Rogers 2001). While the value of reflective practice is widely accepted in educational circles, a critical issue is that reflective writing is complex, and has high rhetorical demands, making it difficult to master unless it is taught in an explicit and systematic way. This paper argues that a functional-semantic approach to language (Eggins 2004), based on Halliday’s (1978) systemic functional linguistics can be used to develop a shared language to explicitly teach and assess reflective writing in higher education courses. The paper outlines key theories and scales of reflection, and then uses systemic functional linguistics to develop a social semiotic model for reflective writing. Examples of reflective writing are analysed to show how such a model can be used explicitly to improve the reflective writing skills of higher education students.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
An examination of the published and unpublished writing of Charmian Clift.
Resumo:
A number of instructors have recently adopted social network sites (SNSs) for learning. However, the learning design of SNSs often remains at a preliminary level similar to a personal log book because it does not properly include reflective learning elements such as individual reflection and collaboration. This article looks at the reflective learning process and the public writing process as a way of improving the quality of reflective learning on SNSs. It proposes a reflective learning model on SNSs based on two key pedagogical concepts for social networking: individual expression and collaborative connection. It is expected that the model would be helpful for instructors in designing a reflective learning process on SNSs in an effective and flexible way.
Resumo:
This paper examines current teaching practice within the context of the Bachelor of Design (Fashion) programme at AUT University and compares it to the approach adopted in previous years. In recent years, staff on the Bachelor of Design (Fashion) adopted a holistic approach to the assessment of design projects similar to the successful ideas and methods put forward by Stella Lange at the FINZ conference, 2005. Prior to adopting this holistic approach, the teaching culture at AUT University was modular and divorced the development of conceptual design ideas from the technical processes of patternmaking and garment construction, thus limiting the creative potential of integrated project work. Fashion Design is not just about drawing pretty pictures but is rather an entire process that encapsulates conceptual design ideas and technical processes within the context of a target market. Fashion design at AUT being under the umbrella of a wider Bachelor of Design must encourage a more serious view of Fashion and Fashion Design as a whole. In the development of the Bachelor of Design degree at AUT, the university recognised that design education would be best serviced by an inclusive approach. At inception, Core Studio and Core Theory papers formed the first semester of the programme across the discipline areas of Fashion, Spatial Design, Graphic Design and Digital Design. These core papers reinforce the reality that there is a common skill set that transcends all design disciplines with the differentiation between disciplines being determined by the techniques and processes they adopt. Studio based teaching within the scope of a major design project was recognised and introduced some time ago for students in their graduating year, however it was also expected that by year 3 the student had amassed the basic skills required to be able to work in this way. The opinion concerning teaching these basic skills was that they were best serviced by a modular approach. Prior attempts to manage design project delivery leant towards deconstructing the newly formed integrated papers in order to ensure key technical skills were covered in enough depth. So, whilst design projects have played an integral part in the delivery of fashion design over the year levels, the earlier projects were timetabled by discipline and unconvincingly connected. This paper discusses how the holistic approach to assessment must be coupled with an integrated approach to delivery. The methods and processes used are demonstrated and some recently trialled developments are shown to have resulted in achieving the integrated approach in both delivery and assessment.
Resumo:
Picture Book, Children's Book Council of Australia Notable Book 2008 What would you do if you were the only one in a deserted city? Where would you go, and what would you do? The Empty City taps into a fantasy that many of us have had as children to be allowed to explore, unhindered, the ordinarily crowded environment of a shopping centre.
Resumo:
Aurora, an illustrated novella, is a retelling of the classic fairytale Sleeping Beauty, set on the Australian coast around the grounds of the family lighthouse. Instead of following in the footsteps of tradition, this tale focuses on the long time Aurora is cursed to sleep by the malevolent Minerva; we follow Aurora as she voyages into the unconscious. Hunted by Minerva through the shifting landscape of her dreams, Aurora is dogged by a nagging pull towards the light—there is something she has left behind. Eventually, realising she must face Minerva to break the curse, they stage a battle of the minds in which Aurora triumphs, having grasped the power of her thoughts, her words. Aurora, an Australian fairytale, is a story of self-empowerment, the ability to shape destiny and the power of the mind. The exegesis examines a two-pronged question: is the illustrated book for young adults—graphic novel—relevant to a contemporary readership, and, is the graphic novel, where text and image intersect, a suitably specular genre in which to explore the unconscious? It establishes the language of the unconscious and the meaning of the term ‘graphic novel’, before investigating the place of the illustrated book for an older readership in a contemporary market, particularly exploring visual literacy and the way text and image—a hybrid narrative—work together. It then studies the aptitude of graphic literature to representing the unconscious and looks at two pioneers of the form: Audrey Niffenegger, specifically her visual novel The Three Incestuous Sisters, and Shaun Tan, and his graphic novel The Arrival. Finally, it reflects upon the creative work, Aurora, in light of three concerns: how best to develop a narrative able to relay the dreaming story; how to bestow a certain ‘Australianess’ upon the text and images; and the dilemma of designing an illustrated book for an older readership.
Resumo:
"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.
Resumo:
In a study of socioeconomically disadvantaged children's acquisition of school literacies, a university research team investigated how a group of teachers negotiated critical literacies and explored notions of social power with elementary children in a suburban school located in an area of high poverty. Here we focus on a grade 2/3 classroom where the teacher and children became involved in a local urban renewal project and on how in the process the children wrote about place and power. Using the students' concerns about their neighborhood, the teacher engaged her class in a critical literacy project that not only involved a complex set of literate practices but also taught the children about power and the possibilities for local civic action. In particular, we discuss examples of children's drawing and writing about their neighborhoods and their lives. We explore how children's writing and drawing might be key elements in developing "critical literacies" in elementary school settings. We consider how such classroom writing can be a mediator of emotions, intellectual and academic learning, social practice, and political activism.